2,832 research outputs found

    Modification of cosmic-ray energy spectra by stochastic acceleration

    Full text link
    Context: Typical space plasmas contain spatially and temporally variable turbulent electromagnetic fields. Understanding the transport of energetic particles and the acceleration mechanisms for charged particles is an important goal of today's astroparticle physics. Aims: To understand the acceleration mechanisms at the particle source, subsequent effects have to be known. Therefore, the modification of a particle energy distribution, due to stochastic acceleration, needs to be investigated. Methods: The diffusion in momentum space was investigated by using both a Monte-Carlo simulation code and by analytically solving the momentum-diffusion equation. For simplicity, the turbulence was assumed to consist of one-dimensional Alfven waves. Results: Using both methods, it is shown that, on average, all particles with velocities comparable to the Alfven speeds are accelerated. This influences the energy distribution by significantly increasing the energy spectral index. Conclusions: Because of electromagnetic turbulence, a particle energy spectrum measured at Earth can drastically deviate from its initial spectrum. However, for particles with velocities significantly above the Alfven speed, the effect becomes negligible.Comment: 10 pages, 6 figures, accepted for publication in Astronomy & Astrophysic

    On Heterotic/Type I Duality in d=8

    Get PDF
    We discuss heterotic corrections to quartic internal U(1) gauge couplings and check duality by calculating one-loop open string diagrams and identifying the D-instanton sum in the dual type I picture. We also compute SO(8)^4 threshold corrections and finally R^2 corrections in type I theory.Comment: 9 pages, Latex, To appear in the proceedings of "Quantum Aspects of Gauge Theories, Supersymmetries and Unification", Corfu, September 199

    Isolated unstable Weibel modes in unmagnetized plasmas with tunable asymmetry

    Full text link
    In this letter, an initially unmagnetized pair plasma with asymmetric velocity distributions is investigated where any unstable Weibel mode must be isolated, with discrete values for the growth rates and the unstable wavenumbers. For both a non-relativistic distribution with thermal spread and a high-relativistic two-stream distribution it is shown that isolated modes are excited and that, as the asymmetry tends to zero, the growth rate remains finite, as long as the distribution function is not precisely symmetric.Comment: Comments: references adde

    Aspects of quark mass generation on a torus

    Get PDF
    In this talk we report on recent results for the quark propagator on a compact manifold. The corresponding Dyson-Schwinger equations on a torus are solved on volumes similar to the ones used in lattice calculations. The quark-gluon interaction is fixed such that the lattice results are reproduced. We discuss both the effects in the infinite volume/continuum limit as well as effects when the volume is small.Comment: 3 pages, 3 figures; talk given by CF at QNP06, Madrid, June 200

    The matrix factorisations of the D-model

    Full text link
    The fundamental matrix factorisations of the D-model superpotential are found and identified with the boundary states of the corresponding conformal field theory. The analysis is performed for both GSO-projections. We also comment on the relation of this analysis to the theory of surface singularities and their orbifold description.Comment: 23 pages, LaTe

    A Note on the Geometry of CHL Heterotic Strings

    Get PDF
    We present a few remarks on disconnected components of the moduli space of heterotic string compactifications on T2T_2. We show in particular how the eight dimensional CHL heterotic string can be understood in terms of topologically non-trivial E8×E8E_8\times E_8 and \Spin(32)/Z_2 vector bundles over the torus, and that the respective moduli spaces coincide

    Infrared Exponents and the Running Coupling of Landau gauge QCD and their Relation to Confinement

    Get PDF
    The infrared behaviour of the gluon and ghost propagators in Landau gauge QCD is reviewed. The Kugo-Ojima confinement criterion and the Gribov-Zwanziger horizon condition result from quite general properties of the ghost Dyson-Schwinger equation. The numerical solutions for the gluon and ghost propagators obtained from a truncated set of Dyson-Schwinger equations provide an explicit example for the anticipated infrared behaviour. The results are in good agreement with corresponding lattice data obtained recently. The resulting running coupling approaches a fix point in the infrared, α(0)=8.92/Nc\alpha(0) = 8.92/N_c. Two different fits for the scale dependence of the running coupling are given and discussed.Comment: 3 pages, 3 figures; talk given by R.A. at the conference Quark Nuclear Physics 200

    D-Branes on ALE Spaces and the ADE Classification of Conformal Field Theories

    Get PDF
    The spectrum of D2-branes wrapped on an ALE space of general ADE type is determined, by representing them as boundary states of N=2 superconformal minimal models. The stable quantum states have RR charges which precisely represent the gauge fields of the corresponding Lie algebra. This provides a simple and direct physical link between the ADE classification of N=2 superconformal field theories, and the corresponding root systems. An affine extension of this structure is also considered, whose boundary states represent the D2-branes plus additional D0-branes.Comment: 12p, harvmac, minor corrrections and ref adde

    Heterotic / type I duality and D-brane instantons

    Get PDF
    We study heterotic/type I duality in d=8,9 uncompactified dimensions. We consider the special (``BPS saturated'') F^4 and R^4 terms in the effective one-loop heterotic action, which are expected to be non-perturbatively exact. Under the standard duality map these translate to tree-level, perturbative and non-perturbative contributions on the type I side. We check agreement with the one-loop open string calculation, and discuss the higher-order perturbative contributions, which arise because of the mild non-holomorphicities of the heterotic elliptic genus. We put the heterotic world-sheet instanton corrections in a form that can be motivated as arising from a D-brane instanton calculation on the type-I side.Comment: latex 23 pages, 3 figures eps included. Final version to appear in Nuclear Physics

    A Note on Computations of D-brane Superpotential

    Full text link
    We develop some computational methods for the integrals over the 3-chains on the compact Calabi-Yau 3-folds that plays a prominent role in the analysis of the topological B-model in the context of the open mirror symmetry. We discuss such 3-chain integrals in two approaches. In the first approach, we provide a systematic algorithm to obtain the inhomogeneous Picard-Fuchs equations. In the second approach, we discuss the analytic continuation of the period integral to compute the 3-chain integral directly. The latter direct integration method is applicable for both on-shell and off-shell formalisms.Comment: 61 pages, 5 figures; v2: typos corrected, minor changes, references adde
    corecore