4,639 research outputs found
Wrapper Maintenance: A Machine Learning Approach
The proliferation of online information sources has led to an increased use
of wrappers for extracting data from Web sources. While most of the previous
research has focused on quick and efficient generation of wrappers, the
development of tools for wrapper maintenance has received less attention. This
is an important research problem because Web sources often change in ways that
prevent the wrappers from extracting data correctly. We present an efficient
algorithm that learns structural information about data from positive examples
alone. We describe how this information can be used for two wrapper maintenance
applications: wrapper verification and reinduction. The wrapper verification
system detects when a wrapper is not extracting correct data, usually because
the Web source has changed its format. The reinduction algorithm automatically
recovers from changes in the Web source by identifying data on Web pages so
that a new wrapper may be generated for this source. To validate our approach,
we monitored 27 wrappers over a period of a year. The verification algorithm
correctly discovered 35 of the 37 wrapper changes, and made 16 mistakes,
resulting in precision of 0.73 and recall of 0.95. We validated the reinduction
algorithm on ten Web sources. We were able to successfully reinduce the
wrappers, obtaining precision and recall values of 0.90 and 0.80 on the data
extraction task
On Non-Abelian Symplectic Cutting
We discuss symplectic cutting for Hamiltonian actions of non-Abelian compact
groups. By using a degeneration based on the Vinberg monoid we give, in good
cases, a global quotient description of a surgery construction introduced by
Woodward and Meinrenken, and show it can be interpreted in algebro-geometric
terms. A key ingredient is the `universal cut' of the cotangent bundle of the
group itself, which is identified with a moduli space of framed bundles on
chains of projective lines recently introduced by the authors.Comment: Various edits made, to appear in Transformation Groups. 28 pages, 8
figure
Iterative forcing and hyperimmunity in reverse mathematics
The separation between two theorems in reverse mathematics is usually done by
constructing a Turing ideal satisfying a theorem P and avoiding the solutions
to a fixed instance of a theorem Q. Lerman, Solomon and Towsner introduced a
forcing technique for iterating a computable non-reducibility in order to
separate theorems over omega-models. In this paper, we present a modularized
version of their framework in terms of preservation of hyperimmunity and show
that it is powerful enough to obtain the same separations results as Wang did
with his notion of preservation of definitions.Comment: 15 page
The Lie-Poisson structure of the reduced n-body problem
The classical n-body problem in d-dimensional space is invariant under the
Galilean symmetry group. We reduce by this symmetry group using the method of
polynomial invariants. As a result we obtain a reduced system with a
Lie-Poisson structure which is isomorphic to sp(2n-2), independently of d. The
reduction preserves the natural form of the Hamiltonian as a sum of kinetic
energy that depends on velocities only and a potential that depends on
positions only. Hence we proceed to construct a Poisson integrator for the
reduced n-body problem using a splitting method.Comment: 26 pages, 2 figure
First year engineering mathematics: the London South Bank University experience
This short article describes an innovative approach to teaching mathematics to first year undergraduates on
a variety of B. Eng. courses offered in the Faculty of Engineering, Science and Built Environment (FESBE) of
London South Bank University (LSBU)
Separatrix splitting at a Hamiltonian bifurcation
We discuss the splitting of a separatrix in a generic unfolding of a
degenerate equilibrium in a Hamiltonian system with two degrees of freedom. We
assume that the unperturbed fixed point has two purely imaginary eigenvalues
and a double zero one. It is well known that an one-parametric unfolding of the
corresponding Hamiltonian can be described by an integrable normal form. The
normal form has a normally elliptic invariant manifold of dimension two. On
this manifold, the truncated normal form has a separatrix loop. This loop
shrinks to a point when the unfolding parameter vanishes. Unlike the normal
form, in the original system the stable and unstable trajectories of the
equilibrium do not coincide in general. The splitting of this loop is
exponentially small compared to the small parameter. This phenomenon implies
non-existence of single-round homoclinic orbits and divergence of series in the
normal form theory. We derive an asymptotic expression for the separatrix
splitting. We also discuss relations with behaviour of analytic continuation of
the system in a complex neighbourhood of the equilibrium
Network Structure, Topology and Dynamics in Generalized Models of Synchronization
We explore the interplay of network structure, topology, and dynamic
interactions between nodes using the paradigm of distributed synchronization in
a network of coupled oscillators. As the network evolves to a global steady
state, interconnected oscillators synchronize in stages, revealing network's
underlying community structure. Traditional models of synchronization assume
that interactions between nodes are mediated by a conservative process, such as
diffusion. However, social and biological processes are often non-conservative.
We propose a new model of synchronization in a network of oscillators coupled
via non-conservative processes. We study dynamics of synchronization of a
synthetic and real-world networks and show that different synchronization
models reveal different structures within the same network
Syzygies in equivariant cohomology for non-abelian Lie groups
We extend the work of Allday-Franz-Puppe on syzygies in equivariant
cohomology from tori to arbitrary compact connected Lie groups G. In
particular, we show that for a compact orientable G-manifold X the analogue of
the Chang-Skjelbred sequence is exact if and only if the equivariant cohomology
of X is reflexive, if and only if the equivariant Poincare pairing for X is
perfect. Along the way we establish that the equivariant cohomology modules
arising from the orbit filtration of X are Cohen-Macaulay. We allow singular
spaces and introduce a Cartan model for their equivariant cohomology. We also
develop a criterion for the finiteness of the number of infinitesimal orbit
types of a G-manifold.Comment: 28 pages; minor change
- …
