2,776 research outputs found
Recommended from our members
Playing with numbers: Using Top Trumps as an ice-breaker and introduction to quantitative methods
Statistics anxiety has been widely documented among both postgraduate and undergraduate social science students and shown to be an obstacle in engaging students in quantitative methods. This article builds on previous studies that have highlighted the utility of fun and games in productive learning and overcoming anxiety. A personalised version of the game Top Trumps was developed for use with a class of postgraduate sociology students in the UK. This game provides an ideal way for students to inductively learn about basic statistical concepts, such as range and dispersion. The game also creates opportunities to engage students in critical discussion of measurement and social categorisation. The article suggests that the employment of such hands-on learning exercises, especially when used in the first week of a quantitative methods module, can stimulate student interest, ameliorate statistics anxiety and encourage critical discussion, thereby positively impacting learning goals in the rest of the module. The article ends by briefly outlining how to adapt the game for use within an undergraduate module
PEPSI: The high-resolution echelle spectrograph and polarimeter for the Large Binocular Telescope
PEPSI is the bench-mounted, two-arm, fibre-fed and stabilized Potsdam Echelle
Polarimetric and Spectroscopic Instrument for the 2x8.4 m Large Binocular
Telescope (LBT). Three spectral resolutions of either 43 000, 120 000 or 270
000 can cover the entire optical/red wavelength range from 383 to 907 nm in
three exposures. Two 10.3kx10.3k CCDs with 9-{\mu}m pixels and peak quantum
efficiencies of 96 % record a total of 92 echelle orders. We introduce a new
variant of a wave-guide image slicer with 3, 5, and 7 slices and peak
efficiencies between 96 %. A total of six cross dispersers cover the six
wavelength settings of the spectrograph, two of them always simultaneously.
These are made of a VPH-grating sandwiched by two prisms. The peak efficiency
of the system, including the telescope, is 15% at 650 nm, and still 11% and 10%
at 390 nm and 900 nm, respectively. In combination with the 110 m2
light-collecting capability of the LBT, we expect a limiting magnitude of 20th
mag in V in the low-resolution mode. The R=120 000 mode can also be used with
two, dual-beam Stokes IQUV polarimeters. The 270 000-mode is made possible with
the 7-slice image slicer and a 100- {\mu}m fibre through a projected sky
aperture of 0.74", comparable to the median seeing of the LBT site. The
43000-mode with 12-pixel sampling per resolution element is our bad seeing or
faint-object mode. Any of the three resolution modes can either be used with
sky fibers for simultaneous sky exposures or with light from a stabilized
Fabry-Perot etalon for ultra-precise radial velocities. CCD-image processing is
performed with the dedicated data-reduction and analysis package PEPSI-S4S. A
solar feed makes use of PEPSI during day time and a 500-m feed from the 1.8 m
VATT can be used when the LBT is busy otherwise. In this paper, we present the
basic instrument design, its realization, and its characteristics
Climate change promotes parasitism in a coral symbiosis.
Coastal oceans are increasingly eutrophic, warm and acidic through the addition of anthropogenic nitrogen and carbon, respectively. Among the most sensitive taxa to these changes are scleractinian corals, which engineer the most biodiverse ecosystems on Earth. Corals' sensitivity is a consequence of their evolutionary investment in symbiosis with the dinoflagellate alga, Symbiodinium. Together, the coral holobiont has dominated oligotrophic tropical marine habitats. However, warming destabilizes this association and reduces coral fitness. It has been theorized that, when reefs become warm and eutrophic, mutualistic Symbiodinium sequester more resources for their own growth, thus parasitizing their hosts of nutrition. Here, we tested the hypothesis that sub-bleaching temperature and excess nitrogen promotes symbiont parasitism by measuring respiration (costs) and the assimilation and translocation of both carbon (energy) and nitrogen (growth; both benefits) within Orbicella faveolata hosting one of two Symbiodinium phylotypes using a dual stable isotope tracer incubation at ambient (26 °C) and sub-bleaching (31 °C) temperatures under elevated nitrate. Warming to 31 °C reduced holobiont net primary productivity (NPP) by 60% due to increased respiration which decreased host %carbon by 15% with no apparent cost to the symbiont. Concurrently, Symbiodinium carbon and nitrogen assimilation increased by 14 and 32%, respectively while increasing their mitotic index by 15%, whereas hosts did not gain a proportional increase in translocated photosynthates. We conclude that the disparity in benefits and costs to both partners is evidence of symbiont parasitism in the coral symbiosis and has major implications for the resilience of coral reefs under threat of global change
Discovery of Globular Clusters in the Proto-Spiral NGC2915: Implications for Hierarchical Galaxy Evolution
We have discovered three globular clusters beyond the Holmberg radius in
Hubble Space Telescope Advanced Camera for Surveys images of the gas-rich dark
matter dominated blue compact dwarf galaxy NGC2915. The clusters, all of which
start to resolve into stars, have M_{V606} = -8.9 to -9.8 mag, significantly
brighter than the peak of the luminosity function of Milky Way globular
clusters. Their colors suggest a metallicity [Fe/H] ~ -1.9 dex, typical of
metal-poor Galactic globular clusters. The specific frequency of clusters is at
a minimum normal, compared to spiral galaxies. However, since only a small
portion of the system has been surveyed it is more likely that the luminosity
and mass normalized cluster content is higher, like that seen in elliptical
galaxies and galaxy clusters. This suggests that NGC2915 resembles a key phase
in the early hierarchical assembly of galaxies - the epoch when much of the old
stellar population has formed, but little of the stellar disk. Depending on the
subsequent interaction history, such systems could go on to build-up larger
elliptical galaxies, evolve into normal spirals, or in rare circumstances
remain suspended in their development to become systems like NGC2915.Comment: ApJ Letters accepted; 6 pages, 2 figures, 3 table
The Luminosity Function of Early-Type Galaxies at z~0.75
We measure the luminosity function of morphologically selected E/S0 galaxies
from to using deep high resolution Advanced Camera for Surveys
imaging data. Our analysis covers an area of 48\Box\arcmin (8 the
area of the HDF-N) and extends 2 magnitudes deeper ( mag) than was
possible in the Deep Groth Strip Survey (DGSS). At , we find
and , and at
, we find . These luminosity
functions are similar in both shape and number density to the luminosity
function using morphological selection (e.g., DGSS), but are much steeper than
the luminosity functions of samples selected using morphological proxies like
the color or spectral energy distribution (e.g., CFRS, CADIS, or COMBO-17). The
difference is due to the `blue', , E/S0 galaxies, which make up to
of the sample at all magnitudes and an increasing proportion of faint
galaxies. We thereby demonstrate the need for {\it both morphological and
structural information} to constrain the evolution of galaxies.
We find that the `blue' E/S0 galaxies have the same average sizes and Sersic
parameters as the `red', , E/S0 galaxies at brighter luminosities
(), but are increasingly different at fainter magnitudes where
`blue' galaxies are both smaller and have lower Sersic parameters. Fits of the
colors to stellar population models suggest that most E/S0 galaxies have short
star-formation time scales ( Gyr), and that galaxies have formed at an
increasing rate from until after which there has been a
gradual decline.Comment: 39 pages, 21 figures, accepted in A
Emerging communities of child-healthcare practice in the management of long-term conditions such as chronic kidney disease: Qualitative study of parents' accounts
Background: Parents of children and young people with long-term conditions who need to deliver clinical care to their child at home with remote support from hospital-based professionals, often search the internet for care-giving information. However, there is little evidence that the information available online was developed and evaluated with parents or that it acknowledges the communities of practice that exist as parents and healthcare professionals share responsibility for condition management. Methods. The data reported here are part of a wider study that developed and tested a condition-specific, online parent information and support application with children and young people with chronic-kidney disease, parents and professionals. Semi-structured interviews were conducted with 19 fathers and 24 mothers who had recently tested the novel application. Data were analysed using Framework Analysis and the Communities of Practice concept. Results: Evolving communities of child-healthcare practice were identified comprising three components and several sub components: (1) Experiencing (parents making sense of clinical tasks) through Normalising care, Normalising illness, Acceptance & action, Gaining strength from the affected child and Building relationships to formalise a routine; (2) Doing (Parents executing tasks according to their individual skills) illustrated by Developing coping strategies, Importance of parents' efficacy of care and Fear of the child's health failing; and (3) Belonging/Becoming (Parents defining task and group members' worth and creating a personal identity within the community) consisting of Information sharing, Negotiation with health professionals and Achieving expertise in care. Parents also recalled factors affecting the development of their respective communities of healthcare practice; these included Service transition, Poor parent social life, Psycho-social affects, Family chronic illness, Difficulty in learning new procedures, Shielding and avoidance, and Language and cultural barriers. Health care professionals will benefit from using the communities of child-healthcare practice model when they support parents of children with chronic kidney disease. Conclusions: Understanding some of the factors that may influence the development of communities of child-healthcare practice will help professionals to tailor information and support for parents learning to manage their child's healthcare. Our results are potentially transferrable to professionals managing the care of children and young people with other long-term conditions. © 2014 Carolan et al.; licensee BioMed Central Ltd
Internal Color Properties of Resolved Spheroids in the Deep HST/ACS field of UGC 10214
(Abridged) We study the internal color properties of a morphologically
selected sample of spheroidal galaxies taken from HST/ACS ERO program of UGC
10214 (``The Tadpole''). By taking advantage of the unprecedented high
resolution of the ACS in this very deep dataset we are able to characterize
spheroids at sub-arcseconds scales. Using the V_606W and I_814W bands, we
construct V-I color maps and extract color gradients for a sample of spheroids
at I_814W < 24 mag. We investigate the existence of a population of
morphologically classified spheroids which show extreme variation in their
internal color properties similar to the ones reported in the HDFs. These are
displayed as blue cores and inverse color gradients with respect to those
accounted from metallicity variations. Following the same analysis we find a
similar fraction of early-type systems (~30%-40%) that show non-homologous
internal colors, suggestive of recent star formation activity. We present two
statistics to quantify the internal color variation in galaxies and for tracing
blue cores, from which we estimate the fraction of non-homogeneous to
homogeneous internal colors as a function of redshift up to z<1.2. We find that
it can be described as about constant as a function of redshift, with a small
increase with redshift for the fraction of spheroids that present strong color
dispersions. The implications of a constant fraction at all redshifts suggests
the existence of a relatively permanent population of evolving spheroids up to
z~1. We discuss the implications of this in the context of spheroidal
formation.Comment: Fixed URL for high resolution version. 13 Pages, 10 Figures. Accepted
for Publication in ApJ. Sep 1st issue. Higher resolution version and complete
table3B at http://acs.pha.jhu.edu/~felipe/e-prints/Tadpol
The Morphology - Density Relation in z ~ 1 Clusters
We measure the morphology--density relation (MDR) and morphology-radius
relation (MRR) for galaxies in seven z ~ 1 clusters that have been observed
with the Advanced Camera for Surveys on board the Hubble Space Telescope.
Simulations and independent comparisons of ourvisually derived morphologies
indicate that ACS allows one to distinguish between E, S0, and spiral
morphologies down to zmag = 24, corresponding to L/L* = 0.21 and 0.30 at z =
0.83 and z = 1.24, respectively. We adopt density and radius estimation methods
that match those used at lower redshift in order to study the evolution of the
MDR and MRR. We detect a change in the MDR between 0.8 < z < 1.2 and that
observed at z ~ 0, consistent with recent work -- specifically, the growth in
the bulge-dominated galaxy fraction, f_E+SO, with increasing density proceeds
less rapidly at z ~ 1 than it does at z ~ 0. At z ~ 1 and density <= 500
galaxies/Mpc^2, we find = 0.72 +/- 0.10. At z ~ 0, an E+S0 population
fraction of this magnitude occurs at densities about 5 times smaller. The
evolution in the MDR is confined to densities >= 40 galaxies/Mpc^2 and appears
to be primarily due to a deficit of S0 galaxies and an excess of Spiral+Irr
galaxies relative to the local galaxy population. The Elliptical fraction -
density relation exhibits no significant evolution between z = 1 and z = 0. We
find mild evidence to suggest that the MDR is dependent on the bolometric X-ray
luminosity of the intracluster medium. Implications for the evolution of the
disk galaxy population in dense regions are discussed in the context of these
observations.Comment: 30 pages, 18 figures. Accepted for publication in ApJ. Full
resolution versions of figs 2,3,6,8 are available at
http://www.stsci.edu/~postman/mdr_figure
Large format heterodyne arrays for observing far-infrared lines with SOFIA
In the wavelength regime between 60 and 300 microns there are a number of atomic and molecular emission lines that are key diagnostic probes of the interstellar medium. These include transitions of [CII], [NII], [OI], HD, H_2D^+, OH, CO, and H_2O, some of which are among the brightest global and local far-infrared lines in the Galaxy. In Giant Molecular Clouds (GMCs), evolved star envelopes, and planetary nebulae, these emission lines can be extended over many arc minutes and possess complicated, often self absorbed, line profiles. High spectral resolution (R > 10^5) observations of these lines at sub-arcminute angular resolution are crucial to understanding the complicated interplay between the interstellar medium and the stars that form from it. This feedback is central to all theories of galactic evolution. Large format heterodyne array receivers can provide the spectral resolution and spatial coverage to probe these lines over extended regions. The advent of large format (~100 pixel) spectroscopic imaging cameras in the far-infrared (FIR) will fundamentally change the way astronomy is performed in this important wavelength regime. While the possibility of such instruments has been discussed for more than two decades, only recently have advances in mixer and local oscillator technology, device fabrication, micromachining, and digital signal processing made the construction of such instruments tractable. These technologies can be implemented to construct a sensitive, flexible, heterodyne array facility instrument for SOFIA. The instrument concept for StratoSTAR: Stratospheric Submm/THz Array Receiver includes a common user mounting, control system, IF processor, spectrometer, and cryogenic system. The cryogenic system will be designed to accept a frontend insert. The frontend insert and associated local oscillator system/relay optics would be provided by individual user groups and reflect their scientific interests. Rapid technology development in this field makes SOFIA the ideal platform to operate such a modular, continuously evolving instrument
- …
