16,479 research outputs found
POPCORN: a Supervisory Control Simulation for Workload and Performance Research
A multi-task simulation of a semi-automatic supervisory control system was developed to provide an environment in which training, operator strategy development, failure detection and resolution, levels of automation, and operator workload can be investigated. The goal was to develop a well-defined, but realistically complex, task that would lend itself to model-based analysis. The name of the task (POPCORN) reflects the visual display that depicts different task elements milling around waiting to be released and pop out to be performed. The operator's task was to complete each of 100 task elements that ere represented by different symbols, by selecting a target task and entering the desired a command. The simulated automatic system then completed the selected function automatically. Highly significant differences in performance, strategy, and rated workload were found as a function of all experimental manipulations (except reward/penalty)
On Balazard, Saias, and Yor's equivalence to the Riemann Hypothesis
Balazard, Saias, and Yor proved that the Riemann Hypothesis is equivalent to
a certain weighted integral of the logarithm of the Riemann zeta-function along
the critical line equaling zero. Assuming the Riemann Hypothesis, we
investigate the rate at which a truncated version of this integral tends to
zero, answering a question of Borwein, Bradley, and Crandall and disproving a
conjecture of the same authors. A simple modification of our techniques gives a
new proof of a classical Omega theorem for the function S(t) in the theory of
the Riemann zeta-function.Comment: 11 page
Creating structure from disorder: using folksonomies to create semantic metadata
This paper reports on an on-going research project to create educational semantic metadata out of folksonomies. The paper describes a simple scenario for the usage of the generated semantic metadata in teaching, and describes the ‘FolksAnnotation’ tool which applies an organization scheme to tags in a specific domain of interest. The contribution of this paper is to describe an evaluation framework which will allow us to validate our claim that folksonomies are potentially a rich source of metadata
An evaluation of active noise control in a cylindrical shell
The physical mechanisms governing the use of active noise control in an extended volume of a cylindrical shell are discussed. Measured data was compared with computer results from a previously derived analytical model based on an infinite shell theory. For both the analytical model and experiment, the radiation of the external monopoles is coupled to the internal acoustic field through the radial displacement of the thin, elastic cylindrical shell. An active noise control system was implemented in the cylinder using a fixed array of discrete monopole sources, all of which lie in the plane of the exterior noise sources. Good agreement between measurement and prediction was obtained for both internal pressure response and overall noise reduction. Attenuations in the source plane greater than 15 dB were recorded along with a uniformly quieted noise environment over the entire length of the experimental model. Results indicate that for extended axial forcing distributions or very low shell damping, axial arrays of control sources may be required. Finally, the Nyquist criteria for the number of azimuthal control sources is shown to provide for effective control over the full cylinder cross section
Improving estimates of the number of fake leptons and other mis-reconstructed objects in hadron collider events: BoB's your UNCLE. (Previously "The Matrix Method Reloaded")
We consider current and alternative approaches to setting limits on new
physics signals having backgrounds from misidentified objects; for example jets
misidentified as leptons, b-jets or photons. Many ATLAS and CMS analyses have
used a heuristic matrix method for estimating the background contribution from
such sources. We demonstrate that the matrix method suffers from statistical
shortcomings that can adversely affect its ability to set robust limits. A
rigorous alternative method is discussed, and is seen to produce fake rate
estimates and limits with better qualities, but is found to be too costly to
use. Having investigated the nature of the approximations used to derive the
matrix method, we propose a third strategy that is seen to marry the speed of
the matrix method to the performance and physicality of the more rigorous
approach.Comment: v1 :11 pages, 5 figures. v2: title change requested by referee, and
other corrections/clarifications found during review. v3: final tweaks
suggested during review + move from revtex to jhep styl
Control of P2X2 Channel Permeability by the Cytosolic Domain
ATP-gated P2X channels are the simplest of the three families of transmitter-gated ion channels. Some P2X channels display a time- and activation-dependent change in permeability as they undergo the transition from the relatively Na+-selective I1 state to the I2 state, which is also permeable to organic cations. We report that the previously reported permeability change of rat P2X2 (rP2X2) channels does not occur at mouse P2X2 (mP2X2) channels expressed in oocytes. Domain swaps, species chimeras, and point mutations were employed to determine that two specific amino acid residues in the cytosolic tail domain govern this difference in behavior between the two orthologous channels. The change in pore diameter was characterized using reversal potential measurements and excluded field theory for several organic ions; both rP2X2 and mP2X2 channels have a pore diameter of ~11 Å in the I1 state, but the transition to the I2 state increases the rP2X2 diameter by at least 3 Å. The I1 to I2 transition occurs with a rate constant of ~0.5 s^-1. The data focus attention on specific residues of P2X2 channel cytoplasmic domains as determinants of permeation in a state-specific manner
A finite difference solution for the propagation of sound in near sonic flows
An explicit time/space finite difference procedure is used to model the propagation of sound in a quasi one-dimensional duct containing high Mach number subsonic flow. Nonlinear acoustic equations are derived by perturbing the time-dependent Euler equations about a steady, compressible mean flow. The governing difference relations are based on a fourth-order, two-step (predictor-corrector) MacCormack scheme. The solution algorithm functions by switching on a time harmonic source and allowing the difference equations to iterate to a steady state. The principal effect of the non-linearities was to shift acoustical energy to higher harmonics. With increased source strengths, wave steepening was observed. This phenomenon suggests that the acoustical response may approach a shock behavior at at higher sound pressure level as the throat Mach number aproaches unity. On a peak level basis, good agreement between the nonlinear finite difference and linear finite element solutions was observed, even through a peak sound pressure level of about 150 dB occurred in the throat region. Nonlinear steady state waveform solutions are shown to be in excellent agreement with a nonlinear asymptotic theory
- …
