2,492 research outputs found

    Non-radial pulsations in the Be/X binaries 4U0115+63 and SAXJ2103.5+4545

    Full text link
    The discovery of non-radial pulsations (NRP) in the Be/X binaries of the Magellanic Clouds (MC, eg. Fabrycky 2005, Coe et al. 2005, Schmidtke & Cowley 2005) provided a new approach to understand these complex systems, and, at the same time, favoured the synergy between two different fields: stellar pulsations and X-ray binaries. This breakthrough was possible thanks to the MACHO and OGLE surveys. However, in our Galaxy, only two Be/X have been reported to show NRP: GROJ2058+42 (Kiziloglu et al. 2007) and LSI+61 235 (Sarty et al. 2009). Our objective is to study the short-term variability of Galactic Be/X binaries, compare them to the Be/X of the MC and to the isolated Galactic Be observed with CoRoT and Kepler. We present preliminary results of two Be/X stars, namely 4U0115+63 and SAXJ2103.5+4545 showing multiperiodicity and periodicity respectively, most probably produced by non-radial pulsations.Comment: 2 pages, 2 figures, IAUS 272 "Active OB stars: structure, evolution, mass loss and critical limits" conference, Paris, July 2010, submitte

    RAT0455+1305: another pulsating hybrid sdB star

    Full text link
    RAT0455+1305 was discovered during the Rapid Temporal Survey which aims in finding any variability on timescales of a few minutes to several hours. The star was found to be another sdBV star with one high amplitude mode and relatively long period. These features along with estimation of T_eff and log g makes this star very similar to Balloon 090100001. Encouraged by prominent results obtained for the latter star we have decided to perform white light photometry on RAT0455+1305. In 2009 we used the 1.5m telescope located in San Pedro Martir Observatory in Mexico. Fourier analysis confirmed the dominant mode found in the discovery data, uncovered another peak close to the dominant one, and three peaks in the low frequency region. This shows that RAT0455+1305 is another hybrid sdBV star pulsating in both p- and g-modes.Comment: Proceedings of The Fourth Meeting on Hot Subdwarf Stars and Related Objects held in China, 20-24 July 2009. Accepted for publication in Astrophysics & Space Scienc

    GALEX J201337.6+092801: The lowest gravity subdwarf B pulsator

    Full text link
    We present the recent discovery of a new subdwarf B variable (sdBV), with an exceptionally low surface gravity. Our spectroscopy of J20136+0928 places it at Teff = 32100 +/- 500, log(g) = 5.15 +/- 0.10, and log(He/H) = -2.8 +/- 0.1. With a magnitude of B = 12.0, it is the second brightest V361 Hya star ever found. Photometry from three different observatories reveals a temporal spectrum with eleven clearly detected periods in the range 376 to 566 s, and at least five more close to our detection limit. These periods are unusually long for the V361 Hya class of short-period sdBV pulsators, but not unreasonable for p- and g-modes close to the radial fundamental, given its low surface gravity. Of the ~50 short period sdB pulsators known to date, only a single one has been found to have comparable spectroscopic parameters to J20136+0928. This is the enigmatic high-amplitude pulsator V338 Ser, and we conclude that J20136+0928 is the second example of this rare subclass of sdB pulsators located well above the canonical extreme horizontal branch in the HR diagram.Comment: 5 pages, accepted for publication in ApJ Letter

    A study of the photometric variability of the peculiar magnetic white dwarf WD1953-011

    Full text link
    We present and interpret simultaneous new photometric and spectroscopic observations of the peculiar magnetic white dwarf WD1953-011. The flux in the V-band filter and intensity of the Balmer spectral lines demonstrate variability with the rotation period of about 1.45 days. According to previous studies, this variability can be explained by the presence of a dark spot having a magnetic nature, analogous to a sunspot. Motivated by this idea, we examine possible physical relationships between the suggested dark spot and the strong-field magnetic structure (magnetic "spot", or "tube") recently identified on the surface of this star. Comparing the rotationally-modulated flux with the variable spectral observables related to the magnetic "spot" we establish their correlation, and therefore their physical relationship. Modeling the variable photometric flux assuming that it is associated with temperature variations in the stellar photosphere, we argue that the strong-field area and dark, low-temperature spot are comparable in size and located at the same latitudes, essentially overlapping each other with a possible slight longitudinal shift. In this paper we also present a new, improved value of the star's rotational period and constrain the characteristics of the thermal inhomogeneity over the degenerate's surface.Comment: accepted to the Ap

    Physics searches at the LHC

    Full text link
    With the LHC up and running, the focus of experimental and theoretical high energy physics will soon turn to an interpretation of LHC data in terms of the physics of electroweak symmetry breaking and the TeV scale. We present here a broad review of models for new TeV-scale physics and their LHC signatures. In addition, we discuss possible new physics signatures and describe how they can be linked to specific models of physics beyond the Standard Model. Finally, we illustrate how the LHC era could culminate in a detailed understanding of the underlying principles of TeV-scale physics.Comment: 184 pages, 55 figures, 14 tables, hundreds of references; scientific feedback is welcome and encouraged. v2: text, references and Overview Table added; feedback still welcom

    Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data

    Get PDF
    A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    corecore