1,801 research outputs found
Oral vinorelbine and cisplatin with concomitant radiotherapy in stage III non-small cell lung cancer (NSCLC): A feasibility study
Background: Concurrent chemoradiotherapy has improved survival in inoperable stage III non-small cell lung cancer (NSCLC). This phase I trial was performed in order to establish a dose recommendation for oral vinorelbine in combination with cisplatin and simultaneous radiotherapy. Patients and Methods: Previously untreated patients with stage IIIB NSCLC received concurrent chemoradiotherapy with 66 Gy and 2 cycles of cisplatin and oral vinorelbine which was administered at 3 different levels (40, 50 and 60 mg/m(2)). This was to be followed by 2 cycles of cisplatin/vinorelbine oral consolidation chemotherapy. The study goal was to determine the maximal recommended dose of oral vinorelbine during concurrent treatment. Results: 11 stage IIIB patients were entered into the study. The median radiotherapy dose was 66 Gy. Grade 3-4 toxicity included neutropenia, esophagitis, gastritis and febrile neutropenia. The dose-limiting toxicity for concurrent chemoradiotherapy was esophagitis. 9 patients received consolidation chemotherapy, with neutropenia and anemia/thrombocytopenia grade 3 being the only toxicities. The overall response was 73%. Conclusion: Oral vinorelbine 50 mg/m(2) (days 1, 8, 15 over 4 weeks) in combination with cisplatin 20 mg/m2 (days 1-4) is the recommended dose in combination with radiotherapy (66 Gy) and will be used for concurrent chemoradiotherapy in a forthcoming phase III trial testing the efficacy of consolidation chemotherapy in patients not progressing after chemoradiotherapy
Sub-Sets of Cancer Stem Cells Differ Intrinsically in Their Patterns of Oxygen Metabolism
PMCID: PMC3640080This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Measuring smuon-selectron mass splitting at the CERN LHC and patterns of supersymmetry breaking
With sufficient data, Large Hadron Collider (LHC) experiments can constrain
the selectron-smuon mass splitting through differences in the di-electron and
di-muon edges from supersymmetry (SUSY) cascade decays. We study the
sensitivity of the LHC to this mass splitting, which within mSUGRA may be
constrained down to O(10^{-4}) for 30 fb^{-1} of integrated luminosity. Over
substantial regions of SUSY breaking parameter space the fractional edge
splitting can be significantly enhanced over the fractional mass splitting.
Within models where the selectron and smuon are constrained to be universal at
a high scale, edge splittings up to a few percent may be induced by
renormalisation group effects and may be significantly discriminated from zero.
The edge splitting provides important information about high-scale SUSY
breaking terms and should be included in any fit of LHC data to high-scale
models
AXIOM: advanced X-ray imaging of the magnetosphere
Planetary plasma and magnetic field environments can be studied in two complementary ways—by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth’s magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques, which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth’s magnetosphere. In this article we describe how an appropriately designed and located X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock, with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth’s magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose ‘AXIOM: Advanced X-ray Imaging of the Magnetosphere’, a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth–Moon L1 point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterise the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and direction of the solar wind magnetic field. We also show simulations that demonstrate how the proposed X-ray telescope design is capable of imaging the predicted emission from the dayside magnetosphere with the sensitivity and cadence required to achieve the science goals of the mission
AXIOM: Advanced X-Ray Imaging Of the Magnetosheath
AXIOM (Advanced X-ray Imaging Of the Magnetosphere) is a concept mission which aims to explain how the Earth's magnetosphere responds to the changing impact of the solar wind using a unique method never attempted before; performing wide-field soft X-ray imaging and spectroscopy of the magnetosheath. magnetopause and bow shock at high spatial and temporal resolution. Global imaging of these regions is possible because of the solar wind charge exchange (SWCX) process which produces elevated soft X-ray emission from the interaction of high charge-state solar wind ions with primarily neutral hydrogen in the Earth's exosphere and near-interplanetary space
Low oxygen tension primes aortic endothelial cells to the reparative effect of tissue-protective cytokines
Erythropoietin (EPO) has both erythropoietic and tissue-protective properties. The EPO analogues carbamylated EPO (CEPO) and pyroglutamate helix B surface peptide (pHBSP) lack the erythropoietic activity of EPO but retain the tissue-protective properties that are mediated by a heterocomplex of EPO receptor (EPOR) and the β common receptor (βCR). We studied the action of EPO and its analogues in a model of wound healing where a bovine aortic endothelial cells (BAECs) monolayer was scratched and the scratch closure was assessed over 24 h under different oxygen concentrations. We related the effects of EPO and its analogues on repair to their effect on BAECs proliferation and migration (evaluated using a micro-Boyden chamber). EPO, CEPO and pHBSP enhanced scratch closure only at lower oxygen (5%), while their effect at atmospheric oxygen (21%) was not significant. The mRNA expression of EPOR was doubled in 5% compared to 21% oxygen, and this was associated with increased EPOR assessed by immunofluorescence and Western blot. By contrast βCR mRNA levels were similar in 5% and 21% oxygen. EPO and its analogues increased both BAECs proliferation and migration, suggesting that both may be involved in the reparative process. The priming effect of low oxygen tension on the action of tissue-protective cytokines may be of relevance to vascular disease, including atherogenesis and restenosis
CONFIRM: a double-blind, placebo controlled phase III clinical trial investigating the effect of nivolumab in patients with relapsed mesothelioma: study protocol for a randomised controlled trial
Background: Mesothelioma is an incurable, apoptosis-resistant cancer caused in most cases by previous exposure
to asbestos and is increasing in incidence. It represents a growing health burden but remains under-researched,
with limited treatment options. Early promising signals of activity relating to both PD-L1- and PD-1-targeted
treatment in mesothelioma implicate a dependency of mesothelioma on this immune checkpoint. There is a need
to evaluate checkpoint inhibitors in patients with relapsed mesothelioma where treatment options are limited.
Methods: The addition of 12 months of nivolumab (anti-PD1 antibody) to standard practice will be conducted in
the UK using a randomised, placebo-controlled phase III trial (the Cancer Research UK CONFIRM trial). A total of 336
patients with pleural or peritoneal mesothelioma who have received at least two prior lines of therapy will be
recruited from UK secondary care sites. Patients will be randomised 2:1 (nivolumab:placebo), stratified according to
epithelioid/non-epithelioid, to receive either 240 mg nivolumab monotherapy or saline placebo as a 30-min
intravenous infusion. Treatment will be for up to 12 months. We will determine whether the use of nivolumab
increases overall survival (the primary efficacy endpoint). Secondary endpoints will include progression-free
survival, objective response rate, toxicity, quality of life and cost-effectiveness. Analysis will be performed
according to the intention-to-treat principle using a Cox regression analysis for the primary endpoint (and
for other time-to-event endpoints).
Discussion: The outcome of this trial will provide evidence of the potential benefit of the use of nivolumab
in the treatment of relapsed mesothelioma. If found to be clinically effective, safe and cost-effective it is likely
to become the new standard of care in the UK
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
- …
