695 research outputs found
Creating Processes Associated with Providing Government Goods and Services Under the Commercial Space Launch Act at Kennedy Space Center
Kennedy Space Center (KSC) has decided to write its agreements under the Commercial Space Launch Act (CSLA) authority to cover a broad range of categories of support that KSC could provide to our commercial partner. Our strategy was to go through the onerous process of getting the agreement in place once and allow added specificity and final cost estimates to be documented on a separate Task Order Request (TOR). This paper is written from the implementing engineering team's perspective. It describes how we developed the processes associated with getting Government support to our emerging commercial partners, such as SpaceX and reports on our success to date
COFS 3: Multibody dynamics and control technology
COFS 3 is the third project within the Control of Flexible Structures (COFS) program. It deals with developing multibody dynamics and control technology for large space structures. It differs from COFS 1 and 2 in two respects. First, it addresses a more complex class of structure, and second it is basically a scale model ground test and analysis program while COFS 1 and 2 feature Shuttle flight experiments. The specific technology thrusts within COFS 3 are model sensitivities, test methods, analysis validation, systems identification, and vibration suppression. The COFS 3 project will develop the methods for using dynamically scaled models and analysis to predict the structural dynamics of large space structures. The project uses the space station as a focus because it is typical of the structures of interest and provides the first opportunity to obtain full-scale on-orbit dynamics data
Joint Density-Functional Theory of the Electrode-Electrolyte Interface: Application to Fixed Electrode Potentials, Interfacial Capacitances, and Potentials of Zero Charge
This work explores the use of joint density-functional theory, a new form of
density-functional theory for the ab initio description of electronic systems
in thermodynamic equilibrium with a liquid environment, to describe
electrochemical systems. After reviewing the physics of the underlying
fundamental electrochemical concepts, we identify the mapping between commonly
measured electrochemical observables and microscopically computable quantities
within an, in principle, exact theoretical framework. We then introduce a
simple, computationally efficient approximate functional which we find to be
quite successful in capturing a priori basic electrochemical phenomena,
including the capacitive Stern and diffusive Gouy-Chapman regions in the
electrochemical double layer, quantitative values for interfacial capacitance,
and electrochemical potentials of zero charge for a series of metals. We
explore surface charging with applied potential and are able to place our ab
initio results directly on the scale associated with the Standard Hydrogen
Electrode (SHE). Finally, we provide explicit details for implementation within
standard density-functional theory software packages at negligible
computational cost over standard calculations carried out within vacuum
environments.Comment: 18 pages, 5 figures. Initially presented at APS March Meeting 2010.
Accepted for publication in Physical Review B on Jul. 27, 201
COFS 3 multibody dynamics and control technology
One of the results from the model definition study showed that the maximum scale factor for a replica model is .25. This is dictated by the fixed dimensions of the Large Spacecraft Lab. Replica scaling laws were applied to simplified theoretical models of joints and the joint/tube/joint system. The practical interpretation of the results for the specific Space Station configuration under study yielded a number of conclusions which are briefly discussed. Detailed suspension analyses were conducted to evaluate the ability of the suspended scale model to emulate the dynamic behavior of the free-free Space Station. The results indicated only a slight preference for smaller scales. A candidate erectable Space Station joint was fabricated at full scale, 1/4 scale and 1/3 scale in order to assess the comparability of the scaled joints to the full scale behavior. Another important question discussed is how well the inherent damping characteristics of the scaled joints compare to those of the full scale joint. The preliminary definition study yielded three separate scale factor recommendations for the scale model
A computationally efficacious free-energy functional for studies of inhomogeneous liquid water
We present an accurate equation of state for water based on a simple
microscopic Hamiltonian, with only four parameters that are well-constrained by
bulk experimental data. With one additional parameter for the range of
interaction, this model yields a computationally efficient free-energy
functional for inhomogeneous water which captures short-ranged correlations,
cavitation energies and, with suitable long-range corrections, the non-linear
dielectric response of water, making it an excellent candidate for studies of
mesoscale water and for use in ab initio solvation methods.Comment: 6 pages, 5 figure
NASA Planning for Orion Multi-Purpose Crew Vehicle Ground Operations
The NASA Orion Ground Processing Team was originally formed by the Kennedy Space Center (KSC) Constellation (Cx) Project Office's Orion Division to define, refine and mature pre-launch and post-landing ground operations for the Orion human spacecraft. The multidisciplined KSC Orion team consisted of KSC civil servant, SAIC, Productivity Apex, Inc. and Boeing-CAPPS engineers, project managers and safety engineers, as well as engineers from Constellation's Orion Project and Lockheed Martin Orion Prime contractor. The team evaluated the Orion design configurations as the spacecraft concept matured between Systems Design Review (SDR), Systems Requirement Review (SRR) and Preliminary Design Review (PDR). The team functionally decomposed prelaunch and post-landing steps at three levels' of detail, or tiers, beginning with functional flow block diagrams (FFBDs). The third tier FFBDs were used to build logic networks and nominal timelines. Orion ground support equipment (GSE) was identified and mapped to each step. This information was subsequently used in developing lower level operations steps in a Ground Operations Planning Document PDR product. Subject matter experts for each spacecraft and GSE subsystem were used to define 5th - 95th percentile processing times for each FFBD step, using the Delphi Method. Discrete event simulations used this information and the logic network to provide processing timeline confidence intervals for launch rate assessments. The team also used the capabilities of the KSC Visualization Lab, the FFBDs and knowledge of the spacecraft, GSE and facilities to build visualizations of Orion pre-launch and postlanding processing at KSC. Visualizations were a powerful tool for communicating planned operations within the KSC community (i.e., Ground Systems design team), and externally to the Orion Project, Lockheed Martin spacecraft designers and other Constellation Program stakeholders during the SRR to PDR timeframe. Other operations planning tools included Kaizen/Lean events, mockups and human factors analysis. The majority of products developed by this team are applicable as KSC prepares 21st Century Ground Systems for the Orion Multi-Purpose Crew Vehicle and Space Launch System
- …
