2,910 research outputs found

    An investigation of resource-allocation decisions by means of project networks.

    Get PDF
    This paper investigates the relationship between resource allocation and ES-policies, which are a type of scheduling policies introduced for stochastic scheduling and which can be represented by a directed acyclic graph. We present a formal treatment of resource flows as are presentation of resource-allocation decisions, extending the existing literature. A number of complexity results are established, showing that a number of recently proposed objective functions for evaluating the quality of ES-policies lead to difficult problems. Finally, some reflections are provided on possible effciency enhancements to enumeration algorithms for ES-policies.Complexity; Project scheduling; Resource allocation; Resource constraints;

    Meta-heuristics for stable scheduling on a single machine.

    Get PDF
    This paper presents a model for single-machine scheduling with stability objective and a common deadline. Job durations are uncertain, and our goal is to ensure that there is little deviation between planned and actual job starting times. We propose two meta-heuristics for solving an approximate formulation of the model that assumes that exactly one job is disrupted during schedule execution, and we also present a meta-heuristic for the global problem with independent job durationsMeta-heuristics; Robustness; Single-machine scheduling; Uncertainty;

    On the construction of stable project baseline schedules.

    Get PDF
    The vast majority of project scheduling efforts assume complete information about the scheduling problem to be solved and a static deterministic environment within which the pre-computed baseline schedule will be executed. In reality, however, project activities are subject to considerable uncertainty, which generally leads to numerous schedule disruptions. It is of interest to develop pre-schedules that can absorb disruptions in activity durations without affecting the planning of other activities, such that co-ordination of resources and material procurement for each of the activities can be performed as smoothly as possible. The objective of this paper is to develop and evaluate various approaches for constructing a stable pre-schedule, which is unlikely to undergo major changes when it needs to be repaired as a reaction to minor activity duration disruptions.

    Models for robust resource allocation in project scheduling.

    Get PDF
    The vast majority of resource-constrained project scheduling efforts assumes complete information about the scheduling problem to be solved and a static deterministic environment within which the pre-computed baseline schedule will be executed. In reality, however, project activities are subject to considerable uncertainty which generally leads to numerous schedule disruptions. In this paper, we present a resource allocation model that protects the makespan of a given baseline schedule against activity duration variability. A branch-and-bound algorithm is developed that solves the proposed robust resource allocation problem in exact and approximate formulations. The procedure relies on constraint propagation during its search. We report on computational results obtained on a set of benchmark problems.Model; Resource allocation; Scheduling;
    corecore