1,037 research outputs found

    Ischemia and reperfusion injury in kidney transplantation : relevant mechanisms in injury and repair

    Get PDF
    Ischemia and reperfusion injury (IRI) is a complex pathophysiological phenomenon, inevitable in kidney transplantation and one of the most important mechanisms for non- or delayed function immediately after transplantation. Long term, it is associated with acute rejection and chronic graft dysfunction due to interstitial fibrosis and tubular atrophy. Recently, more insight has been gained in the underlying molecular pathways and signalling cascades involved, which opens the door to new therapeutic opportunities aiming to reduce IRI and improve graft survival. This review systemically discusses the specific molecular pathways involved in the pathophysiology of IRI and highlights new therapeutic strategies targeting these pathways

    Clinical course and therapeutic approach to varicella zoster virus infection in children with rheumatic autoimmune diseases under immunosuppression.

    Get PDF
    To analyze the clinical presentation and complications of varicella zoster virus (VZV) infection in children with rheumatic diseases treated with immunosuppressive medication such as biological disease-modifying antirheumatic drugs (bDMARDs) and/or conventional disease-modifying antirheumatic drugs (cDMARDs), and to analyze the therapeutic approach to VZV infections with respect to the concomitant immunosuppressive treatment. Retrospective multicenter study using the Swiss Pediatric Rheumatology registry. Children with rheumatic diseases followed in a Swiss center for pediatric rheumatology and treated with cDMARD and/or bDMARD with a clinical diagnosis of varicella or herpes zoster between January 2004 and December 2013 were included. Twenty-two patients were identified, of whom 20 were treated for juvenile idiopathic arthritis, 1 for a polyglandular autoimmune syndrome type III, and 1 for uveitis. Of these 22 patients, 16 had varicella and 6 had herpes zoster. Median age at VZV disease was 7.6 years (range 2 to 17 years), with 6.3 years (range 2 to 17 years) for those with varicella and 11.6 years (range 5 to 16 years) for those with herpes zoster. The median interval between start of immunosuppression and VZV disease was 14.1 months (range 1 to 63 months). Two patients had received varicella vaccine (1 dose each) prior to start of immunosuppression. Concomitant immunosuppressive therapy was methotrexate (MTX) monotherapy (n = 9) or bDMARD monotherapy (n = 2), or a combination of bDMARD with prednisone, MTX or Leflunomide (n = 11). Four patients experienced VZV related complications: cellulitis in 1 patient treated with MTX, and cellulitis, sepsis and cerebellitis in 3 patients treated with biological agents and MTX combination therapy. Six children were admitted to hospital (range of duration: 4 to 9 days) and 12 were treated with valaciclovir or aciclovir. The clinical course of varicella and herpes zoster in children under immunosuppression is variable, with 4 (18 %) of 22 children showing a complicated course. Thorough assessment of VZV disease and vaccination history and correct VZV vaccination according to national guidelines at diagnosis of a rheumatic autoimmune disease is essential to minimize VZV complications during a later immunosuppressive treatment

    Endoscopic Treatment of Esophageal Foreign Bodies in the Elderly

    Get PDF
    SummaryBackgroundIngestion of a foreign body is a prevalent condition among children and psychiatric patients; however, such an issue has seldom been discussed in the elderly.MethodsA retrospective review of medical records of patients more than 60 years of age with a diagnosis of esophageal foreign body (EFB) from December 2007 to December 2010 was performed. A total of 45 elderly patients (24 men and 21 women) were analyzed. Demographic data, impaction level of esophagus, types of EFB, underlying diseases, duration from ingestion to endoscopic intervention, endoscopic managements, and outcomes were analyzed.ResultsThe average age of these patients was 75.0 years (60–95 years). Among the materials that caused esophageal impaction, the most frequent were bones of animal origin (17/45 = 37.8%), followed by meat or food bolus (16/45 = 35.6%), dental prostheses (8/45 = 17.8%), and medicine packing (4/45 = 8.8%). In about half of these patients, the EFBs were entrapped in the cervical esophagus. There was no mortality. The success of removing EFB at an initial stage in these patients was about 88.8% (40/45). The retrieval-associated complications occurred in six patients with mis-swallowing of fish bones and medicine packing; four had wound bleeding, which need endoscopic hemostasis, and the other two had penetrating wounds that needed surgical repair.ConclusionFlexible upper endoscopy is relatively safe and effective for extracting EFB in the elderly. Elderly patients with EFBs had a high rate of underlying diseases. Thus, additional care and considerations must be given to such population

    Different selectivities of oxidants during oxidation of methionine residues in the α-1-proteinase inhibitor

    Get PDF
    AbstractOxidation of the reactive site methionine (Met) in α-1-proteinase inhibitor (α-1-PI) to methionine sulfoxide (Met(O)) is known to cause depletion of its elastase inhibitory activity. To estimate the selectivity of different oxidants in converting Met to Met(O) in α-1-PI, we measured the molar ratio Met(O)/α-1-PI at total inactivation. This ratio was determined to be 1.2 for both the myeloperoxidase/H2O2/chloride system and the related compound NH2Cl. With taurine monochloramine, another myeloperoxidase-related oxidant, 1.05 mol Met(O) were generated per mol α-1-PI during inactivation. These oxidants attack preferentially one Met residue in α-1-PI, which is identical with Met 358, as concluded from the parallelism of loss of elastase inhibitory activity and oxidation of Met. A similar high specificity for Met oxidation was determined for the xanthine oxidase-derived oxidants. In contrast, the ratio found for ozone and m-chloroperoxybenzoic acid was 6.0 and 5.0, respectively, indicating oxidation of additional Met residues besides the reactive site Met in α-1-PI, i.e. unselective action of these oxidants. Further studies were performed on the efficiency of oxidants for total depletion of the elastase inhibitory capacity of α-1-PI. Ozone and m-chloroperoxybenzoic acid were 10-fold less effective and the superoxide anion/hydroxyl radicals were 30–50-fold less effective to inactivate the elastase inhibitory activity as compared to the myeloperoxidase-derived oxidants. The myeloperoxidase-related oxidants are discussed as important regulators of α-1-PI activity in vivo

    Organ-specific responses during brain death:increased aerobic metabolism in the liver and anaerobic metabolism with decreased perfusion in the kidneys

    Get PDF
    Hepatic and renal energy status prior to transplantation correlates with graft survival. However, effects of brain death (BD) on organ-specific energy status are largely unknown. We studied metabolism, perfusion, oxygen consumption, and mitochondrial function in the liver and kidneys following BD. BD was induced in mechanically-ventilated rats, inflating an epidurally-placed Fogarty-catheter, with sham-operated rats as controls. A 9.4T-preclinical MRI system measured hourly oxygen availability (BOLD-related R2*) and perfusion (T1-weighted). After 4 hrs, tissue was collected, mitochondria isolated and assessed with high-resolution respirometry. Quantitative proteomics, qPCR, and biochemistry was performed on stored tissue/plasma. Following BD, the liver increased glycolytic gene expression (Pfk-1) with decreased glycogen stores, while the kidneys increased anaerobic- (Ldha) and decreased gluconeogenic-related gene expression (Pck-1). Hepatic oxygen consumption increased, while renal perfusion decreased. ATP levels dropped in both organs while mitochondrial respiration and complex I/ATP synthase activity were unaffected. In conclusion, the liver responds to increased metabolic demands during BD, enhancing aerobic metabolism with functional mitochondria. The kidneys shift towards anaerobic energy production while renal perfusion decreases. Our findings highlight the need for an organ-specific approach to assess and optimise graft quality prior to transplantation, to optimise hepatic metabolic conditions and improve renal perfusion while supporting cellular detoxification

    Reparative and Regenerative Effects of Mesenchymal Stromal Cells-Promising Potential for Kidney Transplantation?

    Get PDF
    Mesenchymal stromal cells (MSCs) possess reparative, regenerative and immunomodulatory properties. The current literature suggests that MSCs could improve kidney transplant outcome via immunomodulation. In many clinical domains, research has also focussed on the regenerative and reparative effects of therapies with MSCs. However, in the field of transplantation, data on this subject remain scarce. This review provides an overview of what is known about the regenerative and reparative effects of MSCs in various fields ranging from wound care to fracture healing and also examines the potential of these promising MSC properties to improve the outcome of kidney transplantations

    CONTROL OF KEY POLYMER PROPERTIES VIA REVERSIBLE ADDITION-FRAGMENTATION CHAIN TRANSFER IN EMULSION POLYMERIZATION

    Get PDF
    Free radical emulsion polymerization (FRP) is widely adopted in industry due to its applicability to a wide range of monomers. Despite its many benefits and wide spread use, the fast chain growth and the presence of rapid irreversible termination impose limitations with respect to the degree of control in FRP. Furthermore, producing block copolymers and polymers with complex structures via FRP is not feasible. Closer control of macromolecular chain structure and molar mass, using novel polymerization techniques, is required to synthesize and optimize many new polymer products. Reversible addition fragmentation chain transfer (RAFT)-mediated polymerization is a novel controlled living free radical technique used to impart living characters in free radical polymerization. In combination with emulsion polymerization, the process is industrially promising and attractive for the production of tailored polymeric products. It allows for the production of particles with specially-tailored properties, including size, composition, morphology, and molecular weights. The mechanism of RAFT process and the effect of participating groups were discussed with reviews on the previous work on rate retardation. A mathematical model accounting for the effect of concentrations of propagating, intermediate, dormant and dead chains was developed based on their reaction pathways. The model was combined with a chain-length dependent termination model in order to account for the decreased termination rate. The model was validated against experimental data for solution and bulk polymerizations of styrene. The role of the intermediate radical and the effect of RAFT agent on the chain length dependent termination rate were addressed theoretically. The developed kinetic model was used with validated kinetic parameters to assess the observed retardation in solution polymerization of styrene with high active RAFT agent (cumyl dithiobenzoate). The fragmentation rate coefficient was used as a model parameter, and a value equal to 6×104 s-1 was found to provide a good agreement with the experimental data. The model predictions indicated that the observed retardation could be attributed to the cross termination of the intermediate radical and, to some extent, to the RAFT effect on increasing the average termination rate coefficient. The model predictions showed that to preserve the living nature of RAFT polymerization, a low initiator concentration is recommended. In line with the experimental data, model simulations revealed that the intermediate radical prefers fragmentation in the direction of the reactant. The application of RAFT process has also been extended to emulsion polymerization of styrene. A comprehensive dynamic model for batch and semi-batch emulsion polymerizations with a reversible addition-fragmentation chain transfer process was developed. To account for the integration of the RAFT process, new modifications were added to the kinetics of zero-one emulsion polymerization. The developed model was designed to predict key polymer properties such as: average particle size, conversion, particle size distribution (PSD), and molecular weight distribution (MWD) and its averages. The model was checked for emulsion polymerization processes of styrene with O-ethylxanthyl ethyl propionate as a RAFT based transfer agent. By using the model to investigate the effect of RAFT agent on the polymerization attributes, it was found that the rate of polymerization and the average size of the latex particles decreased with increasing amount of RAFT agent. It was also found that the molecular weight distribution could be controlled, as it is strongly influenced by the presence of the RAFT based transfer agent. The effects of RAFT agent, surfactant (SDS), initiator (KPS) and temperature were further investigated under semi-batch conditions. Monomer conversion, MWD and PSD were found to be strongly affected by monomer feed rate. With semi-batch mode, Mn and increased with increasing monomer flow rate. Initiator concentration had a significant effect on PSD. The results suggest that living polymerization can be approached by operating under semi-batch conditions where a linear growth of polymer molecular weight with conversion was obtained. The lack of online instrumentation was the main reason for developing our calorimetry-based soft-sensor. The rate of polymerization, which is proportional to the heat of reaction, was estimated and integrated to obtain the overall monomer conversion. The calorimetric model developed was found to be capable of estimating polymer molecular weight via simultaneous estimation of monomer and RAFT agent concentrations. The model was validated with batch and semi-batch emulsion polymerization of styrene with and without RAFT agent. The results show good agreement between measured conversion profiles by calorimetry with those measured by the gravimetric technique. Additionally, the number average molecular weight results measured by SEC (GPC) with double detections compare well with those calculated by the calorimetric model. Application of the offline dynamic optimisation to the emulsion polymerization process of styrene was investigated for the PSD, MWD and monomer conversion. The optimal profiles obtained were then validated experimentally and a good agreement was obtained. The gained knowledge has been further applied to produce polymeric particles containing block copolymers. First, methyl acrylate, butyl acrylate and styrene were polymerized separately to produce the first block. Subsequently, the produced homopolymer attached with xanthate was chain-extended with another monomer to produce block copolymer under batch conditions. Due to the formation of new particles during the second stage batch polymerization, homopolymer was formed and the block copolymer produced was not of high purity. The process was further optimized by operating under semi-batch conditions. The choice of block sequence was found to be important in reducing the influence of terminated chains on the distributions of polymer obtained. It has been found that polymerizing styrene first followed by the high active acrylate monomers resulted in purer block copolymer with low polydispersity confirmed by GPC and H-NMR analysis

    Kwetsbaar vitalisme; Een verbinding tussen psychoanalyse, schizoanalyse en humanistiek

    Get PDF
    In mijn masterscriptie onderzoek ik wat de waarde en kracht is van onbewust existentiële en discursief sociaal-politieke invloeden voor de humanistiek als menswetenschap. Ik onderneem een zoektocht door het landschap van de psychoanalyse (in het bijzonder de objectrelatietheorie van Melanie Klein, Ronald Fairbairn en Donald Winnicot) en aanverwante denkers (Jacques Lacan en Gilles Deleuze & Felix Guattari) die hierop een cruciale kritiek hebben geformuleerd. In het eerste deel behandel ik de belangrijkste kernconcepten binnen de objectrelatietheorie. Dit deel geeft de lezer een indruk van wat er op onbewust existentieel- en intersubjectief niveau kan spelen in de contacten die we met anderen aangaan. De inter- en externalisering van bepaalde objectrepresentaties en de daaraan gekoppelde neurosen staan hierbij centraal. In de overgang naar het tweede deel wordt het de lezer duidelijk dat er binnen de objectrelatietheorie geen verwijzingen te vinden zijn naar de potentiële invloed van sociaal-politieke factoren op het functioneren van de psyche, het gedrag en in de formatie van objecten. Het is de psychoanalyticus en filosoof Jacques Lacan die vanaf de jaren vijftig een sterke kritiek uit op de psychoanalyse van zijn tijd. Als eerste thematiseert hij de formatie van het ik of ego in relatie tot de taal en de symbolische orde, waardoor hij letterlijk de omringende wereld in het analytische denken binnenbrengt. Waar Lacan de omringende wereld in het psychoanalytische gedachtegoed binnenbrengt, intensiveren Deleuze & Guattari dit proces nog eens extra. In Anti-Oedipus (1972) formuleren zij, in navolging van Lacan, een kritiek op de gehele psychoanalyse. In tegenstelling tot Lacan, die zich weinig tot niet verliet op politieke uitspraken of consequenties van zijn theorie, positioneren Deleuze & Guattari zich expliciet als sociaalpolitieke denkers en diepen dit spoor verder uit. Beiden streven een verschuiving na van psychoanalyse richting schizoanalyse, een alternatief conceptueel instrumentarium waarbinnen de bewegingen in de sociaal-politieke werkelijkheid definitief als graadmeter van analyse worden genomen. In het derde en laatste deel formuleer ik onder de noemer ‘kwetsbaar vitalisme’ aanvullende existentiële en sociaal-politieke denklijnen, ten gunste van de humanistiek als menswetenschap. Een aanzet die zijn gewicht ontleent aan de inzichten uit de eerste twee delen. In dit derde deel zet ik een experimentele koers van analyse uit, gestut door praktische voorbeelden, die uitnodigt tot discussie onder vakgenoten

    Pancreas Transplantation from Donors after Circulatory Death:an Irrational Reluctance?

    Get PDF
    Purpose of Review Beta-cell replacement is the best therapeutic option for patients with type 1 diabetes. Because of donor scarcity, more extended criteria donors are used for transplantation. Donation after circulatory death donors (DCD) are not commonly used for pancreas transplantation, because of the supposed higher risk of complications. This review gives an overview on the pathophysiology, risk factors, and outcome in DCD transplantation and discusses different preservation methods. Recent Findings Studies on outcomes of DCD pancreata show similar results compared with those of donation after brain death (DBD), when accumulation of other risk factors is avoided. Hypothermic machine perfusion is shown to be a safe method to improve graft viability in experimental settings. Summary DCD should not be the sole reason to decline a pancreas for transplantation. Adequate donor selection and improved preservation techniques can lead to enhanced pancreas utilization and outcome
    corecore