1,014 research outputs found

    Is autophagy the key mechanism by which the sphingolipid rheostat controls the cell fate decision?

    Get PDF
    Sphingolipids are major constituents of biological membrane and some of them behave as second messengers involved in the cell fate decision. Ceramide and sphingosine 1-phosphate (S1P) constitute a rheostat system in which ceramide promotes cell death and S1P increases cell survival. We have shown that both sphingolipids are able to trigger autophagy with opposing outcomes on cell survival. Here we discuss and speculate on the diverging functions of the autophagic pathways induced by ceramide and S1P, respectively

    La loi du 11 octobre 2010 au prisme du Conseil d’État et du Conseil constitutionnel

    Get PDF
    De la lecture combinée de l’étude du Conseil d’État et de la décision du Conseil constitutionnel relatives à la loi du 11 octobre 2010 interdisant la dissimulation du visage dans l’espace public ressortent deux idées partagées : l’inadéquation à l’objectif poursuivi des fondements juridiques traditionnels et donc la nécessité d’un fondement novateur. Pour l’une et l’autre institution, une interdiction générale doit demeurer l’exception, justifiant que son fondement fasse l’objet d’une appréciation qui sorte elle-même de l’ordinaire. Le juge constitutionnel a ainsi dégagé une norme de référence jusque-là inexploitée.Two main ideas are shared by the Council of State and the Constitutional Council as regards the Act of 11 October 2010 prohibiting the concealment of the face in the public space: traditional legal basis are inappropriate to achieve the objective which requires an innovative basis. For each institution, a general prohibition must remain the exception, justifying that its basis is something unique to stand out. Thus, the constitutional court has highlighted a hitherto untapped reference standard

    A saposin deficiency model in Drosophila: Lysosomal storage, progressive neurodegeneration and sensory physiological decline

    Get PDF
    Saposin deficiency is a childhood neurodegenerative lysosomal storage disorder (LSD) that can cause premature death within three months of life. Saposins are activator proteins that promote the function of lysosomal hydrolases that mediate the degradation of sphingolipids. There are four saposin proteins in humans, which are encoded by the prosaposin gene. Mutations causing an absence or impaired function of individual saposins or the whole prosaposin gene lead to distinct LSDs due to the storage of different classes of sphingolipids. The pathological events leading to neuronal dysfunction induced by lysosomal storage of sphingolipids are as yet poorly defined. We have generated and characterised a Drosophila model of saposin deficiency that shows striking similarities to the human diseases. Drosophila saposin-related (dSap-r) mutants show a reduced longevity, progressive neurodegeneration, lysosomal storage, dramatic swelling of neuronal soma, perturbations in sphingolipid catabolism, and sensory physiological deterioration. Our data suggests a genetic interaction with a calcium exchanger (Calx) pointing to a possible calcium homeostasis deficit in dSap-r mutants. Together these findings support the use of dSap-r mutants in advancing our understanding of the cellular pathology implicated in saposin deficiency and related LSDs

    Abnormal iron metabolism in fibroblasts from a patient with the neurodegenerative disease hereditary ferritinopathy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nucleotide duplications in exon 4 of the ferritin light polypeptide (FTL) gene cause the autosomal dominant neurodegenerative disease neuroferritinopathy or hereditary ferritinopathy (HF). Pathologic examination of patients with HF has shown abnormal ferritin and iron accumulation in neurons and glia in the central nervous system (CNS) as well as in cells of other organ systems, including skin fibroblasts. To gain some understanding on the molecular basis of HF, we characterized iron metabolism in primary cultures of human skin fibroblasts from an individual with the <it>FTL c.497_498dupTC </it>mutation.</p> <p>Results</p> <p>Compared to normal controls, HF fibroblasts showed abnormal iron metabolism consisting of increased levels of ferritin polypeptides, divalent metal transporter 1, basal iron content and reactive oxygen species, and decreased levels of transferrin receptor-1 and IRE-IRP binding activity.</p> <p>Conclusions</p> <p>Our data indicates that HF fibroblasts replicate the abnormal iron metabolism observed in the CNS of patients with HF. We propose that HF fibroblasts are a unique cellular model in which to study the role of abnormal iron metabolism in the pathogenesis of HF without artifacts derived from over-expression or lack of endogenous translational regulatory elements.</p

    GM2-GM3 gangliosides ratio is dependent on GRP94 through down-regulation of GM2-AP cofactor in brain metastasis cells

    Get PDF
    GRP94 is an ATP-dependent chaperone able to regulate pro-oncogenic signaling pathways. Previous studies have shown a critical role of GRP94 in brain metastasis (BrM) pathogenesis and progression. In this work, an untargeted lipidomic analysis revealed that some lipid species were altered in GRP94-deficient cells, specially GM2 and GM3 gangliosides. The catalytic pathway of GM2 is affected by the low enzymatic activity of beta-Hexosaminidase (HexA), responsible for the hydrolysis of GM2 to GM3. Moreover, a deficiency of the GM2-activator protein (GM2-AP), the cofactor of HexA, is observed without alteration of gene expression, indicating a post-transcriptional alteration of GM2-AP in the GRP94-ablated cells. One plausible explanation of these observations is that GM2-AP is a client of GRP94, resulting in defective GM2 catabolic processing and lysosomal accumulation of GM2 in GRP94-ablated cells. Overall, given the role of gangliosides in cell surface dynamics and signaling, their imbalance might be linked to modifications of cell behaviour acquired in BrM progression. This work indicates that GM2-AP could be an important factor in ganglioside balance maintenance. These findings highlight the relevance of GM3 and GM2 gangliosides in BrM and reveal GM2-AP as a promising diagnosis and therapeutic target in BrM research

    IL-6 Deficiency Attenuates Murine Diet-Induced Non-Alcoholic Steatohepatitis

    Get PDF
    BACKGROUND:The role of inflammation in the pathogenesis of non-alcoholic steatohepatitis (NASH), a common cause of liver disease, is still poorly understood. This study aimed at assessing the involvement of a major inflammatory cytokine, IL-6, in NASH. MATERIALS AND METHODS:Steatohepatitis was induced by feeding wild-type or IL-6(-/-) mice for 5 weeks with a methionine and choline-deficient (MCD) diet. RESULTS:Whereas MCD diet-induced weight loss and decreases in serum glucose, cholesterol and triglyceride levels were similar in both genotypes, serum alanine aminotransferase was less elevated in IL-6(-/-) mice than in wild-type animals. Despite having a comparable liver steatosis score, IL-6-deficient mice exhibited less lobular inflammation than their wild-type littermates. Liver gene expression of TGF-beta and MCP-1 was also strongly attenuated in mutant mice; a more modest reduction was observed for PPAR-gamma and F4/80 transcripts as well as proteins. Chromatographic analysis of liver lipids demonstrated that MCD diet induced in normal and mutant mice a similar decrease in the ratio of phosphatidylcholine to phosphatidylethanolamine. However, the diet-induced increase in the levels of sphingomyelin and ceramide was less important in IL-6(-/-) mice. CONCLUSION:Altogether, these results indicate that IL-6 deficiency does not block the development of NASH; yet, IL-6 plays a critical role in the accompanying liver inflammation
    corecore