410 research outputs found
Different Perspectives on Asthenia in Astronauts and Cosmonauts: International Research Literature
The Behavioral Health and Performance (BHP) Element is one of the six elements within the NASA Human Research Program (HRP) and is responsible for managing four risks: a) The Risk of Performance Decrements due to inadequate Cooperation, Coordination, Communication and Psychological Adaptation within a Team (Team), b) the Risk of Performance Errors due to Sleep Loss, Circadian De-synchronization, Fatigue and Work Overload (Sleep), c) Risk of Behavioral Conditions (BMed), and d) the Risk of Psychiatric Disorders (BMed). The aim of this report is to address some of the recommendations made by the recent NASA HRP Standing Review Panel for the Behavioral Medicine Risk of Psychiatric Disorders. Such recommendations included: a) the inclusion of important national and international literature in English and non-English language materials; including journals, books, magazines, conference reports and b) an extensive literature review of certain types of psychological states to predict, detect, and assess adverse mental states that may negatively affect the psychological well being of the astronauts, specifically asthenia. This report was a collaborative international work effort focused on the evaluation and determination of the importance of continuing research on asthenia as a possible psychological problem that might affect the optimal psychological functioning among crewmembers during long-duration space flight missions. Russian medical personnel (flight surgeons and psychologist) have observed symptoms of asthenia (weakness, increased fatigue, irritability, and attention and memory disorders) in cosmonauts after four months in space (Myasnikov& Zamaleddinov1996; Grigorieve, 1996 ) and believe that asthenia is one of the greater risks that will affect crews? optimal psychological functioning
Methodological Challenges in Sustainability Science: A Call for Method Plurality, Procedural Rigor and Longitudinal Research
Sustainability science encompasses a unique field that is defined through its purpose, the problem it addresses, and its solution-oriented agenda. However, this orientation creates significant methodological challenges. In this discussion paper, we conceptualize sustainability problems as wicked problems to tease out the key challenges that sustainability science is facing if scientists intend to deliver on its solution-oriented agenda. Building on the available literature, we discuss three aspects that demand increased attention for advancing sustainability science: 1) methods with higher diversity and complementarity are needed to increase the chance of deriving solutions to the unique aspects of wicked problems; for instance, mixed methods approaches are potentially better suited to allow for an approximation of solutions, since they cover wider arrays of knowledge; 2) methodologies capable of dealing with wicked problems demand strict procedural and ethical guidelines, in order to ensure their integration potential; for example, learning from solution implementation in different contexts requires increased comparability between research approaches while carefully addressing issues of legitimacy and credibility; and 3) approaches are needed that allow for longitudinal research, since wicked problems are continuous and solutions can only be diagnosed in retrospect; for example, complex dynamics of wicked problems play out across temporal patterns that are not necessarily aligned with the common timeframe of participatory sustainability research. Taken together, we call for plurality in methodologies, emphasizing procedural rigor and the necessity of continuous research to effectively addressing wicked problems as well as methodological challenges in sustainability science
Delivering community benefits through REDD +: Lessons from Joint Forest Management in Zambia
In implementing reducing emissions from deforestation and degradation (REDD), significant attention is being paid to ensuring that communities stand to benefit. Safeguards to protect local people's rights and interests have been formulated in response concerns over the potential negative impact on communities of forest preservation. To fulfil safeguards, many sub-Saharan African countries are looking to community-based natural resource management (CBNRM). Current critiques of CBNRM projects outline the importance of project design and policy context in shaping whether or not communities actually stand to benefit. This paper explores these aspects in a case study of Joint Forest Management (JFM) in Zambia, and examines the role of Zambia's REDD preparedness programme in shaping them. The case study was evaluated using stakeholder and policy document analyses, informed by interviews, and tied into the broader forest governance network. The findings highlight the way in which the politics and policies of forest governance in Zambia shape the on-the-ground JFM project and influence community benefits. In the case studied, even with careful local-level project design, JFM would be hindered in its delivery of REDD safeguards. Therefore, for REDD to deliver community safeguards, it must be considered as a broader process of political and governance change
Achieving the Way for Automated Segmentation of Nuclei in Cancer Tissue Images through Morphology-Based Approach: a Quantitative Evaluation
In this paper we address the problem of nuclear segmentation in cancer tissue images, that is critical for specific protein activity quantification and for cancer diagnosis and therapy. We present a fully automated morphology-based technique able to perform accurate nuclear segmentations in images with heterogeneous staining and multiple tissue layers and we compare it with an alternate semi-automated method based on a well established segmentation approach, namely active contours. We discuss active contours’ limitations in the segmentation of immunohistochemical images and we demonstrate and motivate through extensive experiments the better accuracy of our fully automated approach compared to various active contours implementations
Level Set Segmentation with Shape and Appearance Models Using Affine Moment Descriptors
We propose a level set based variational approach that incorporates shape priors into edge-based and region-based models. The evolution of the active contour depends on local and global information. It has been implemented using an efficient narrow band technique. For each boundary pixel we calculate its dynamic according to its gray level, the neighborhood and geometric properties established by training shapes. We also propose a criterion for shape aligning based on affine transformation using an image normalization procedure. Finally, we illustrate the benefits of the our approach on the liver segmentation from CT images
Constitutional Law-Criminal Procedure-Independent Right of Self-Representation in Sixth Amendment Permits Defendant to Act as Own Lawyer at State Criminal Trials
Constitutional Law-Criminal Procedure-Independent Right of Self-Representation in Sixth Amendment Permits Defendant to Act as Own Lawyer at State Criminal Trials
Probabilistic Atlas Based Segmentation Using Affine Moment Descriptors and Graph-Cuts
We show a procedure for constructing a probabilistic atlas based on affine moment descriptors. It uses a normalization procedure over the labeled atlas. The proposed linear registration is defined by closed-form expressions involving only geometric moments. This procedure applies both to atlas construction as atlas-based segmentation. We model the likelihood term for each voxel and each label using parametric or nonparametric distributions and the prior term is determined by applying the vote-rule. The probabilistic atlas is built with the variability of our linear registration. We have two segmentation strategy: a) it applies the proposed affine registration to bring the target image into the coordinate frame of the atlas or b) the probabilistic atlas is non-rigidly aligning with the target image, where the probabilistic atlas is previously aligned to the target image with our affine registration. Finally, we adopt a graph cut - Bayesian framework for implementing the atlas-based segmentation
Soil Functions & Ecosystem Services
In order to fulfil RECARE’s aim to quantify in a harmonized, spatially explicit way impacts of degradation and conservation on soil functions and ecosystem services, it is important to understand the concept and review the current scientific debate. This will lay the foundation for the development and selection of appropriate methods to measure, evaluate, communicate and negotiate the services we obtain from soils with stakeholders in order to improve land management.
Despite various research activities in the last decades across the world, many challenges remain to integrate the concept of ecosystem services (ES) in decision-making, and a coherent approach to assess and value ES is still lacking (de Groot et al., 2010). There are many different, often context-specific, ES frameworks with their own definitions and understanding of terms. This chapter therefore aims to identify the state of the art and knowledge gaps in order to develop an operational framework of the ES concept for the RECARE project. It will provide an overview on existing soil functions and ES frameworks and on approaches to monitor and value ES, with a special focus on soil aspects. Furthermore, it will address the question how the ES concept is operationalized in research projects and land management in Europe so far. Based on this review, the chapter concludes with a suggestion of an adapted ES framework for RECARE and on how to operationalize it for practical application in preventing and remediating degradation of soils in Europe
EVOLUTION OF FLAME TO SURFACE HEAT FLUX DURING UPWARD FLAME SPREAD ON POLYMETHYL METHACRYLATE (PMMA)
The heat feedback profile across 5cm wide, 15cm tall samples of PMMA is measured as a flame spreads vertically across its surface. Incident heat flux to a water cooled gauge is determined with peak values averaging to 36kW/m^2 across the height of the sample. This heat flux has been separated into its convective and radiative components and, at this scale, radiative heat transfer is shown to account for between 5 and 15% of total flame to surface heat flux. Based on these measurements, net heat flux into the pyrolyzing material can be determined. Correlations, expressed solely as a function of sample burning rate, predicting net heat feedback to the material's surface are developed
- …
