858 research outputs found
The Landshoff-Nachtmann Pomeron on the Lattice
We investigate the Landshoff-Nachtmann two-gluon-exchange model of the
Pomeron using gluon propagators computed in the Landau gauge within quenched
lattice QCD calculations. We first determine an effective gluon-quark coupling
by constraining the Pomeron-quark coupling to its phenomenological value
\beta_0 = 2\, \gev^{-1}. We then provide predictions for a variety of
diffractive processes. As the propagators have been evaluated entirely from QCD
first principles (although in the quenched approximation), our results provide
a consistency check of the Landshoff-Nachtmann model. We address the issue of
the possible gauge-dependence of our results, which will be the object of a
future study.Comment: uuencoded, compressed tar file, 13 pages latex, 4 Postscript figures,
requires epsf.st
Patchiness and Demographic Noise in Three Ecological Examples
Understanding the causes and effects of spatial aggregation is one of the
most fundamental problems in ecology. Aggregation is an emergent phenomenon
arising from the interactions between the individuals of the population, able
to sense only -at most- local densities of their cohorts. Thus, taking into
account the individual-level interactions and fluctuations is essential to
reach a correct description of the population. Classic deterministic equations
are suitable to describe some aspects of the population, but leave out features
related to the stochasticity inherent to the discreteness of the individuals.
Stochastic equations for the population do account for these
fluctuation-generated effects by means of demographic noise terms but, owing to
their complexity, they can be difficult (or, at times, impossible) to deal
with. Even when they can be written in a simple form, they are still difficult
to numerically integrate due to the presence of the "square-root" intrinsic
noise. In this paper, we discuss a simple way to add the effect of demographic
stochasticity to three classic, deterministic ecological examples where
aggregation plays an important role. We study the resulting equations using a
recently-introduced integration scheme especially devised to integrate
numerically stochastic equations with demographic noise. Aimed at scrutinizing
the ability of these stochastic examples to show aggregation, we find that the
three systems not only show patchy configurations, but also undergo a phase
transition belonging to the directed percolation universality class.Comment: 20 pages, 5 figures. To appear in J. Stat. Phy
Pyrochlore Photons: The U(1) Spin Liquid in a S=1/2 Three-Dimensional Frustrated Magnet
We study the S=1/2 Heisenberg antiferromagnet on the pyrochlore lattice in
the limit of strong easy-axis exchange anisotropy. We find, using only standard
techniques of degenerate perturbation theory, that the model has a U(1) gauge
symmetry generated by certain local rotations about the z-axis in spin space.
Upon addition of an extra local interaction in this and a related model with
spins on a three-dimensional network of corner-sharing octahedra, we can write
down the exact ground state wavefunction with no further approximations. Using
the properties of the soluble point we show that these models enter the U(1)
spin liquid phase, a novel fractionalized spin liquid with an emergent U(1)
gauge structure. This phase supports gapped S^z = 1/2 spinons carrying the U(1)
``electric'' gauge charge, a gapped topological point defect or ``magnetic''
monopole, and a gapless ``photon,'' which in spin language is a gapless,
linearly dispersing S^z = 0 collective mode. There are power-law spin
correlations with a nontrivial angular dependence, as well as novel U(1)
topological order. This state is stable to ALL zero-temperature perturbations
and exists over a finite extent of the phase diagram. Using a convenient
lattice version of electric-magnetic duality, we develop the effective
description of the U(1) spin liquid and the adjacent soluble point in terms of
Gaussian quantum electrodynamics and calculate a few of the universal
properties. The resulting picture is confirmed by our numerical analysis of the
soluble point wavefunction. Finally, we briefly discuss the prospects for
understanding this physics in a wider range of models and for making contact
with experiments.Comment: 22 pages, 14 figures. Further minor changes. To appear in Phys. Rev.
Electrical transport studies of quench condensed Bi films at the initial stage of film growth: Structural transition and the possible formation of electron droplets
The electrical transport properties of amorphous Bi films prepared by
sequential quench deposition have been studied in situ. A
superconductor-insulator (S-I) transition was observed as the film was made
increasingly thicker, consistent with previous studies. Unexpected behavior was
found at the initial stage of film growth, a regime not explored in detail
prior to the present work. As the temperature was lowered, a positive
temperature coefficient of resistance (dR/dT > 0) emerged, with the resistance
reaching a minimum before the dR/dT became negative again. This behavior was
accompanied by a non-linear and asymmetric I-V characteristic. As the film
became thicker, conventional variable-range hopping (VRH) was recovered. We
attribute the observed crossover in the electrical transport properties to an
amorphous to granular structural transition. The positive dR/dT found in the
amorphous phase of Bi formed at the initial stage of film growth was
qualitatively explained by the formation of metallic droplets within the
electron glass.Comment: 7 pages, 6 figure
Possible origins of macroscopic left-right asymmetry in organisms
I consider the microscopic mechanisms by which a particular left-right (L/R)
asymmetry is generated at the organism level from the microscopic handedness of
cytoskeletal molecules. In light of a fundamental symmetry principle, the
typical pattern-formation mechanisms of diffusion plus regulation cannot
implement the "right-hand rule"; at the microscopic level, the cell's
cytoskeleton of chiral filaments seems always to be involved, usually in
collective states driven by polymerization forces or molecular motors. It seems
particularly easy for handedness to emerge in a shear or rotation in the
background of an effectively two-dimensional system, such as the cell membrane
or a layer of cells, as this requires no pre-existing axis apart from the layer
normal. I detail a scenario involving actin/myosin layers in snails and in C.
elegans, and also one about the microtubule layer in plant cells. I also survey
the other examples that I am aware of, such as the emergence of handedness such
as the emergence of handedness in neurons, in eukaryote cell motility, and in
non-flagellated bacteria.Comment: 42 pages, 6 figures, resubmitted to J. Stat. Phys. special issue.
Major rewrite, rearranged sections/subsections, new Fig 3 + 6, new physics in
Sec 2.4 and 3.4.1, added Sec 5 and subsections of Sec
Digital Quantum Simulation with Rydberg Atoms
We discuss in detail the implementation of an open-system quantum simulator
with Rydberg states of neutral atoms held in an optical lattice. Our scheme
allows one to realize both coherent as well as dissipative dynamics of complex
spin models involving many-body interactions and constraints. The central
building block of the simulation scheme is constituted by a mesoscopic Rydberg
gate that permits the entanglement of several atoms in an efficient, robust and
quick protocol. In addition, optical pumping on ancillary atoms provides the
dissipative ingredient for engineering the coupling between the system and a
tailored environment. As an illustration, we discuss how the simulator enables
the simulation of coherent evolution of quantum spin models such as the
two-dimensional Heisenberg model and Kitaev's toric code, which involves
four-body spin interactions. We moreover show that in principle also the
simulation of lattice fermions can be achieved. As an example for controlled
dissipative dynamics, we discuss ground state cooling of frustration-free spin
Hamiltonians.Comment: submitted to special issue "Quantum Information with Neutral
Particles" of "Quantum Information Processing
Narcissism normalisation: tourism influences and sustainability implications
The concept of narcissism normalisation suggests that individuals and societies are becoming more narcissistic due to various cultural influences. Tourism is reviewed here as one such possible influence. Exploitative, entitled and exhibitionistic tendencies associated with narcissism are wellestablished
in tourism. Yet tourism is also an intimate, communal and satisfying activity which may counteract narcissism. Increases in narcissism
have significant implications from a sustainable tourism perspective. Narcissism is associated with exploitative and entitled behaviours that over time cause significant harm to those people and landscapes that
come into contact with. Narcissism appears to be incompatible with principles of sustainability and the challenges this poses for the industry are reviewed, while the opportunities are also explored. There are signs that narcissism, particularly those aspects relating to exhibitionism, can be
co-opted to benefit sustainable development
Asymptotics of orthogonal polynomials for a weight with a jump on [−1,1]
We consider the orthogonal polynomials on [-1, 1] with respect to the weight
w(c)(x) = h(x)(1 - x)(alpha) (1+ x)beta Xi(c)(x), alpha, beta > -1,
where h is real analytic and strictly positive on [-1, 1] and Xi(c) is a step-like function: Xi(c)(x) = 1 for x is an element of [-1, 0) and Xi(c) (x) = c(2), c > 0, for x is an element of [0, 1]. We obtain strong uniform asymptotics of the monic orthogonal polynomials in C, as well as first terms of the asymptotic expansion of the main parameters (leading coefficients of the orthonormal polynomials and the recurrence coefficients) as n -> infinity. In particular, we prove for w(c) a conjecture of A. Magnus regarding the asymptotics of the recurrence coefficients. The main focus is on the local analysis at the origin. We study the asymptotics of the Christoffel-Darboux kernel in a neighborhood of the jump and show that the zeros of the orthogonal polynomials no longer exhibit clock behavior.
For the asymptotic analysis we use the steepest descent method of Deift and Zhou applied to the noncommutative Riemann-Hilbert problems characterizing the orthogonal polynomials. The local analysis at x = 0 is carried out in terms of confluent hypergeometric functions. Incidentally, we establish some properties of these functions that may have an independent interest.Junta de Andalucía-Spain- FQM-229 and P06- FQM-01735.Ministry of Science and Innovation of Spain - MTM2008-06689-C02-01FCT -SFRH/BD/29731/200
Muon Energy Estimate Through Multiple Scattering with the Macro Detector
Muon energy measurement represents an important issue for any experiment
addressing neutrino induced upgoing muon studies. Since the neutrino
oscillation probability depends on the neutrino energy, a measurement of the
muon energy adds an important piece of information concerning the neutrino
system. We show in this paper how the MACRO limited streamer tube system can be
operated in drift mode by using the TDC's included in the QTPs, an electronics
designed for magnetic monopole search. An improvement of the space resolution
is obtained, through an analysis of the multiple scattering of muon tracks as
they pass through our detector. This information can be used further to obtain
an estimate of the energy of muons crossing the detector. Here we present the
results of two dedicated tests, performed at CERN PS-T9 and SPS-X7 beam lines,
to provide a full check of the electronics and to exploit the feasibility of
such a multiple scattering analysis. We show that by using a neural network
approach, we are able to reconstruct the muon energy for 40 GeV. The
test beam data provide an absolute energy calibration, which allows us to apply
this method to MACRO data.Comment: 25 pages, 11 figures, Submitted to Nucl. Instr. & Meth.
Measurement of the residual energy of muons in the Gran Sasso underground Laboratories
The MACRO detector was located in the Hall B of the Gran Sasso underground
Laboratories under an average rock overburden of 3700 hg/cm^2. A transition
radiation detector composed of three identical modules, covering a total
horizontal area of 36 m^2, was installed inside the empty upper part of the
detector in order to measure the residual energy of muons. This paper presents
the measurement of the residual energy of single and double muons crossing the
apparatus. Our data show that double muons are more energetic than single ones.
This measurement is performed over a standard rock depth range from 3000 to
6500 hg/cm^2.Comment: 28 pages, 9 figure
- …
