3,214 research outputs found
Metastability of Asymptotically Well-Behaved Potential Games
One of the main criticisms to game theory concerns the assumption of full
rationality. Logit dynamics is a decentralized algorithm in which a level of
irrationality (a.k.a. "noise") is introduced in players' behavior. In this
context, the solution concept of interest becomes the logit equilibrium, as
opposed to Nash equilibria. Logit equilibria are distributions over strategy
profiles that possess several nice properties, including existence and
uniqueness. However, there are games in which their computation may take time
exponential in the number of players. We therefore look at an approximate
version of logit equilibria, called metastable distributions, introduced by
Auletta et al. [SODA 2012]. These are distributions that remain stable (i.e.,
players do not go too far from it) for a super-polynomial number of steps
(rather than forever, as for logit equilibria). The hope is that these
distributions exist and can be reached quickly by logit dynamics.
We identify a class of potential games, called asymptotically well-behaved,
for which the behavior of the logit dynamics is not chaotic as the number of
players increases so to guarantee meaningful asymptotic results. We prove that
any such game admits distributions which are metastable no matter the level of
noise present in the system, and the starting profile of the dynamics. These
distributions can be quickly reached if the rationality level is not too big
when compared to the inverse of the maximum difference in potential. Our proofs
build on results which may be of independent interest, including some spectral
characterizations of the transition matrix defined by logit dynamics for
generic games and the relationship of several convergence measures for Markov
chains
Topological Entanglement Entropy of a Bose-Hubbard Spin Liquid
The Landau paradigm of classifying phases by broken symmetries was
demonstrated to be incomplete when it was realized that different quantum Hall
states could only be distinguished by more subtle, topological properties.
Today, the role of topology as an underlying description of order has branched
out to include topological band insulators, and certain featureless gapped Mott
insulators with a topological degeneracy in the groundstate wavefunction.
Despite intense focus, very few candidates for these topologically ordered
"spin liquids" exist. The main difficulty in finding systems that harbour spin
liquid states is the very fact that they violate the Landau paradigm, making
conventional order parameters non-existent. Here, we uncover a spin liquid
phase in a Bose-Hubbard model on the kagome lattice, and measure its
topological order directly via the topological entanglement entropy. This is
the first smoking-gun demonstration of a non-trivial spin liquid, identified
through its entanglement entropy as a gapped groundstate with emergent Z2 gauge
symmetry.Comment: 4+ pages, 3 figure
Three-body interactions with cold polar molecules
We show that polar molecules driven by microwave fields give naturally rise
to strong three-body interactions, while the two-particle interaction can be
independently controlled and even switched off. The derivation of these
effective interaction potentials is based on a microscopic understanding of the
underlying molecular physics, and follows from a well controlled and systematic
expansion into many-body interaction terms. For molecules trapped in an optical
lattice, we show that these interaction potentials give rise to Hubbard models
with strong nearest-neighbor two-body and three-body interaction. As an
illustration, we study the one-dimensional Bose-Hubbard model with dominant
three-body interaction and derive its phase diagram.Comment: 8 pages, 4 figure
Stochastic population growth in spatially heterogeneous environments
Classical ecological theory predicts that environmental stochasticity
increases extinction risk by reducing the average per-capita growth rate of
populations. To understand the interactive effects of environmental
stochasticity, spatial heterogeneity, and dispersal on population growth, we
study the following model for population abundances in patches: the
conditional law of given is such that when is small the
conditional mean of is approximately , where and are the abundance and per
capita growth rate in the -th patch respectivly, and is the
dispersal rate from the -th to the -th patch, and the conditional
covariance of and is approximately . We show for such a spatially extended population that if
is the total population abundance, then ,
the vector of patch proportions, converges in law to a random vector
as , and the stochastic growth rate equals the space-time average per-capita growth rate
\sum_i\mu_i\E[Y_\infty^i] experienced by the population minus half of the
space-time average temporal variation \E[\sum_{i,j}\sigma_{ij}Y_\infty^i
Y_\infty^j] experienced by the population. We derive analytic results for the
law of , find which choice of the dispersal mechanism produces an
optimal stochastic growth rate for a freely dispersing population, and
investigate the effect on the stochastic growth rate of constraints on
dispersal rates. Our results provide fundamental insights into "ideal free"
movement in the face of uncertainty, the persistence of coupled sink
populations, the evolution of dispersal rates, and the single large or several
small (SLOSS) debate in conservation biology.Comment: 47 pages, 4 figure
Astrobiological Complexity with Probabilistic Cellular Automata
Search for extraterrestrial life and intelligence constitutes one of the
major endeavors in science, but has yet been quantitatively modeled only rarely
and in a cursory and superficial fashion. We argue that probabilistic cellular
automata (PCA) represent the best quantitative framework for modeling
astrobiological history of the Milky Way and its Galactic Habitable Zone. The
relevant astrobiological parameters are to be modeled as the elements of the
input probability matrix for the PCA kernel. With the underlying simplicity of
the cellular automata constructs, this approach enables a quick analysis of
large and ambiguous input parameters' space. We perform a simple clustering
analysis of typical astrobiological histories and discuss the relevant boundary
conditions of practical importance for planning and guiding actual empirical
astrobiological and SETI projects. In addition to showing how the present
framework is adaptable to more complex situations and updated observational
databases from current and near-future space missions, we demonstrate how
numerical results could offer a cautious rationale for continuation of
practical SETI searches.Comment: 37 pages, 11 figures, 2 tables; added journal reference belo
What traits are carried on mobile genetic elements, and why?
Although similar to any other organism, prokaryotes can transfer genes vertically from mother cell to daughter cell, they can also exchange certain genes horizontally. Genes can move within and between genomes at fast rates because of mobile genetic elements (MGEs). Although mobile elements are fundamentally self-interested entities, and thus replicate for their own gain, they frequently carry genes beneficial for their hosts and/or the neighbours of their hosts. Many genes that are carried by mobile elements code for traits that are expressed outside of the cell. Such traits are involved in bacterial sociality, such as the production of public goods, which benefit a cell's neighbours, or the production of bacteriocins, which harm a cell's neighbours. In this study we review the patterns that are emerging in the types of genes carried by mobile elements, and discuss the evolutionary and ecological conditions under which mobile elements evolve to carry their peculiar mix of parasitic, beneficial and cooperative genes
Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science
Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability
Theory of disk accretion onto supermassive black holes
Accretion onto supermassive black holes produces both the dramatic phenomena
associated with active galactic nuclei and the underwhelming displays seen in
the Galactic Center and most other nearby galaxies. I review selected aspects
of the current theoretical understanding of black hole accretion, emphasizing
the role of magnetohydrodynamic turbulence and gravitational instabilities in
driving the actual accretion and the importance of the efficacy of cooling in
determining the structure and observational appearance of the accretion flow.
Ongoing investigations into the dynamics of the plunging region, the origin of
variability in the accretion process, and the evolution of warped, twisted, or
eccentric disks are summarized.Comment: Mostly introductory review, to appear in "Supermassive black holes in
the distant Universe", ed. A.J. Barger, Kluwer Academic Publishers, in pres
The Impact of Global Warming and Anoxia on Marine Benthic Community Dynamics: an Example from the Toarcian (Early Jurassic)
The Pliensbachian-Toarcian (Early Jurassic) fossil record is an archive of natural data of benthic community response to global warming and marine long-term hypoxia and anoxia. In the early Toarcian mean temperatures increased by the same order of magnitude as that predicted for the near future; laminated, organic-rich, black shales were deposited in many shallow water epicontinental basins; and a biotic crisis occurred in the marine realm, with the extinction of approximately 5% of families and 26% of genera. High-resolution quantitative abundance data of benthic invertebrates were collected from the Cleveland Basin (North Yorkshire, UK), and analysed with multivariate statistical methods to detect how the fauna responded to environmental changes during the early Toarcian. Twelve biofacies were identified. Their changes through time closely resemble the pattern of faunal degradation and recovery observed in modern habitats affected by anoxia. All four successional stages of community structure recorded in modern studies are recognised in the fossil data (i.e. Stage III: climax; II: transitional; I: pioneer; 0: highly disturbed). Two main faunal turnover events occurred: (i) at the onset of anoxia, with the extinction of most benthic species and the survival of a few adapted to thrive in low-oxygen conditions (Stages I to 0) and (ii) in the recovery, when newly evolved species colonized the re-oxygenated soft sediments and the path of recovery did not retrace of pattern of ecological degradation (Stages I to II). The ordination of samples coupled with sedimentological and palaeotemperature proxy data indicate that the onset of anoxia and the extinction horizon coincide with both a rise in temperature and sea level. Our study of how faunal associations co-vary with long and short term sea level and temperature changes has implications for predicting the long-term effects of “dead zones” in modern oceans
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
- …
