1,728 research outputs found

    The biological origin of linguistic diversity

    Get PDF
    In contrast with animal communication systems, diversity is characteristic of almost every aspect of human language. Languages variously employ tones, clicks, or manual signs to signal differences in meaning; some languages lack the noun-verb distinction (e.g., Straits Salish), whereas others have a proliferation of fine-grained syntactic categories (e.g., Tzeltal); and some languages do without morphology (e.g., Mandarin), while others pack a whole sentence into a single word (e.g., Cayuga). A challenge for evolutionary biology is to reconcile the diversity of languages with the high degree of biological uniformity of their speakers. Here, we model processes of language change and geographical dispersion and find a consistent pressure for flexible learning, irrespective of the language being spoken. This pressure arises because flexible learners can best cope with the observed high rates of linguistic change associated with divergent cultural evolution following human migration. Thus, rather than genetic adaptations for specific aspects of language, such as recursion, the coevolution of genes and fast-changing linguistic structure provides the biological basis for linguistic diversity. Only biological adaptations for flexible learning combined with cultural evolution can explain how each child has the potential to learn any human language

    Plasmonically Enhanced Reflectance of Heat Radiation from Low-Bandgap Semiconductor Microinclusions

    Get PDF
    Increased reflectance from the inclusion of highly scattering particles at low volume fractions in an insulating dielectric offers a promising way to reduce radiative thermal losses at high temperatures. Here, we investigate plasmonic resonance driven enhanced scattering from microinclusions of low-bandgap semiconductors (InP, Si, Ge, PbS, InAs and Te) in an insulating composite to tailor its infrared reflectance for minimizing thermal losses from radiative transfer. To this end, we compute the spectral properties of the microcomposites using Monte Carlo modeling and compare them with results from Fresnel equations. The role of particle size-dependent Mie scattering and absorption efficiencies, and, scattering anisotropy are studied to identify the optimal microinclusion size and material parameters for maximizing the reflectance of the thermal radiation. For composites with Si and Ge microinclusions we obtain reflectance efficiencies of 57 - 65% for the incident blackbody radiation from sources at temperatures in the range 400 - 1600 {\deg}C. Furthermore, we observe a broadbanding of the reflectance spectra from the plasmonic resonances due to charge carriers generated from defect states within the semiconductor bandgap. Our results thus open up the possibility of developing efficient high-temperature thermal insulators through use of the low-bandgap semiconductor microinclusions in insulating dielectrics.Comment: Main article (8 Figures and 2 Tables) + Supporting Information (8 Figures

    Exploring the measurement of markedness and its relationship with other linguistic variables

    Get PDF
    Antonym pair members can be differentiated by each word's markedness-that distinction attributable to the presence or absence of features at morphological or semantic levels. Morphologically marked words incorporate their unmarked counterpart with additional morphs (e.g., "unlucky" vs. "lucky"); properties used to determine semantically marked words (e.g., "short" vs. "long") are less clearly defined. Despite extensive theoretical scrutiny, the lexical properties of markedness have received scant empirical study. The current paper employs an antonym sequencing approach to measure markedness: establishing markedness probabilities for individual words and evaluating their relationship with other lexical properties (e.g., length, frequency, valence). Regression analyses reveal that markedness probability is, as predicted, related to affixation and also strongly related to valence. Our results support the suggestion that antonym sequence is reflected in discourse, and further analysis demonstrates that markedness probabilities, derived from the antonym sequencing task, reflect the ordering of antonyms within natural language. In line with the Pollyanna Hypothesis, we argue that markedness is closely related to valence; language users demonstrate a tendency to present words evaluated positively ahead of those evaluated negatively if given the choice. Future research should consider the relationship of markedness and valence, and the influence of contextual information in determining which member of an antonym pair is marked or unmarked within discourse

    Is spoken language all-or-nothing? Implications for future speech-based human-machine interaction

    Get PDF
    Recent years have seen significant market penetration for voice-based personal assistants such as Apple’s Siri. However, despite this success, user take-up is frustratingly low. This article argues that there is a habitability gap caused by the inevitablemismatch between the capabilities and expectations of human users and the features and benefits provided by contemporary technology. Suggestions aremade as to how such problems might be mitigated, but a more worrisome question emerges: “is spoken language all-or-nothing”? The answer, based on contemporary views on the special nature of (spoken) language, is that there may indeed be a fundamental limit to the interaction that can take place between mismatched interlocutors (such as humans and machines). However, it is concluded that interactions between native and non-native speakers, or between adults and children, or even between humans and dogs, might provide critical inspiration for the design of future speech-based human-machine interaction

    Entrepreneurs’ age, institutions, and social value creation goals: a multi-country study

    Get PDF
    This study explores the relationship between an entrepreneur's age and his/her social value creation goals. Building on the lifespan developmental psychology literature and institutional theory, we hypothesize a U-shaped relationship between entrepreneurs’ age and their choice to create social value through their ventures, such that younger and older entrepreneurs create more social value with their businesses while middle age entrepreneurs are relatively more economically and less socially oriented with their ventures. We further hypothesize that the quality of a country’s formal institutions in terms of economic, social, and political freedom steepen the U-shaped relationship between entrepreneurs’ age and their choice to pursue social value creation as supportive institutional environments allow entrepreneurs to follow their age-based preferences. We confirm our predictions using multilevel mixed-effects linear regressions on a sample of over 15,000 entrepreneurs (aged between 18 and 64 years) in 45 countries from Global Entrepreneurship Monitor data. The findings are robust to several alternative specifications. Based on our findings, we discuss implications for theory and practice, and we propose future research directions

    Transboundary health impacts of transported global air pollution and international trade

    Get PDF
    Millions of people die every year from diseases caused by exposure to outdoor air pollution1, 2, 3, 4, 5. Some studies have estimated premature mortality related to local sources of air pollution6, 7, but local air quality can also be affected by atmospheric transport of pollution from distant sources8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18. International trade is contributing to the globalization of emission and pollution as a result of the production of goods (and their associated emissions) in one region for consumption in another region14, 19, 20, 21, 22. The effects of international trade on air pollutant emissions23, air quality14 and health24 have been investigated regionally, but a combined, global assessment of the health impacts related to international trade and the transport of atmospheric air pollution is lacking. Here we combine four global models to estimate premature mortality caused by fine particulate matter (PM2.5) pollution as a result of atmospheric transport and the production and consumption of goods and services in different world regions. We find that, of the 3.45 million premature deaths related to PM2.5 pollution in 2007 worldwide, about 12 per cent (411,100 deaths) were related to air pollutants emitted in a region of the world other than that in which the death occurred, and about 22 per cent (762,400 deaths) were associated with goods and services produced in one region for consumption in another. For example, PM2.5 pollution produced in China in 2007 is linked to more than 64,800 premature deaths in regions other than China, including more than 3,100 premature deaths in western Europe and the USA; on the other hand, consumption in western Europe and the USA is linked to more than 108,600 premature deaths in China. Our results reveal that the transboundary health impacts of PM2.5 pollution associated with international trade are greater than those associated with long-distance atmospheric pollutant transport

    Search for the standard model Higgs boson at LEP

    Get PDF

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT
    corecore