1,956 research outputs found

    Convergence of expansions in Schr\"odinger and Dirac eigenfunctions, with an application to the R-matrix theory

    Full text link
    Expansion of a wave function in a basis of eigenfunctions of a differential eigenvalue problem lies at the heart of the R-matrix methods for both the Schr\"odinger and Dirac particles. A central issue that should be carefully analyzed when functional series are applied is their convergence. In the present paper, we study the properties of the eigenfunction expansions appearing in nonrelativistic and relativistic RR-matrix theories. In particular, we confirm the findings of Rosenthal [J. Phys. G: Nucl. Phys. 13, 491 (1987)] and Szmytkowski and Hinze [J. Phys. B: At. Mol. Opt. Phys. 29, 761 (1996); J. Phys. A: Math. Gen. 29, 6125 (1996)] that in the most popular formulation of the R-matrix theory for Dirac particles, the functional series fails to converge to a claimed limit.Comment: Revised version, accepted for publication in Journal of Mathematical Physics, 21 pages, 1 figur

    Inverse eigenvalue problem for discrete three-diagonal Sturm-Liouville operator and the continuum limit

    Full text link
    In present article the self-contained derivation of eigenvalue inverse problem results is given by using a discrete approximation of the Schroedinger operator on a bounded interval as a finite three-diagonal symmetric Jacobi matrix. This derivation is more correct in comparison with previous works which used only single-diagonal matrix. It is demonstrated that inverse problem procedure is nothing else than well known Gram-Schmidt orthonormalization in Euclidean space for special vectors numbered by the space coordinate index. All the results of usual inverse problem with continuous coordinate are reobtained by employing a limiting procedure, including the Goursat problem -- equation in partial derivatives for the solutions of the inversion integral equation.Comment: 19 pages There were made some additions (and reformulations) to the text making the derivation of the results more precise and understandabl

    The inverse scattering problem at fixed energy based on the Marchenko equation for an auxiliary Sturm-Liouville operator

    Full text link
    A new approach is proposed to the solution of the quantum mechanical inverse scattering problem at fixed energy. The method relates the fixed energy phase shifts to those arising in an auxiliary Sturm-Liouville problem via the interpolation theory of the Weyl-Titchmarsh m-function. Then a Marchenko equation is solved to obtain the potential.Comment: 6 pages, 8 eps figure

    Effects of Noise in a Cortical Neural Model

    Full text link
    Recently Segev et al. (Phys. Rev. E 64,2001, Phys.Rev.Let. 88, 2002) made long-term observations of spontaneous activity of in-vitro cortical networks, which differ from predictions of current models in many features. In this paper we generalize the EI cortical model introduced in a previous paper (S.Scarpetta et al. Neural Comput. 14, 2002), including intrinsic white noise and analyzing effects of noise on the spontaneous activity of the nonlinear system, in order to account for the experimental results of Segev et al.. Analytically we can distinguish different regimes of activity, depending from the model parameters. Using analytical results as a guide line, we perform simulations of the nonlinear stochastic model in two different regimes, B and C. The Power Spectrum Density (PSD) of the activity and the Inter-Event-Interval (IEI) distributions are computed, and compared with experimental results. In regime B the network shows stochastic resonance phenomena and noise induces aperiodic collective synchronous oscillations that mimic experimental observations at 0.5 mM Ca concentration. In regime C the model shows spontaneous synchronous periodic activity that mimic activity observed at 1 mM Ca concentration and the PSD shows two peaks at the 1st and 2nd harmonics in agreement with experiments at 1 mM Ca. Moreover (due to intrinsic noise and nonlinear activation function effects) the PSD shows a broad band peak at low frequency. This feature, observed experimentally, does not find explanation in the previous models. Besides we identify parametric changes (namely increase of noise or decreasing of excitatory connections) that reproduces the fading of periodicity found experimentally at long times, and we identify a way to discriminate between those two possible effects measuring experimentally the low frequency PSD.Comment: 25 pages, 10 figures, to appear in Phys. Rev.

    GAP WORK project report: training for youth practitioners on tackling gender-related violence

    Get PDF
    This project sought to challenge gender-related violence against (and by) children and young people by developing training for practitioners who have everyday contact with general populations of children and young people (‘youth practitioners’). Through improved knowledge and understanding practitioners can better identify and challenge sexist, sexualising, homophobic or controlling language and behaviour, and know when and how to refer children and young people to the most appropriate support services. This summary outlines the Project and our initial findings about the success of the four training programmes developed and piloted.Co-funded by the DAPHNE III programme of the EU

    Application of approximation theory by nonlinear manifolds in Sturm-Liouville inverse problems

    Full text link
    We give here some negative results in Sturm-Liouville inverse theory, meaning that we cannot approach any of the potentials with m+1m+1 integrable derivatives on R+\mathbb{R}^+ by an ω\omega-parametric analytic family better than order of (ωlnω)(m+1)(\omega\ln\omega)^{-(m+1)}. Next, we prove an estimation of the eigenvalues and characteristic values of a Sturm-Liouville operator and some properties of the solution of a certain integral equation. This allows us to deduce from [Henkin-Novikova] some positive results about the best reconstruction formula by giving an almost optimal formula of order of ωm\omega^{-m}.Comment: 40 page

    Whittaker-Hill equation and semifinite-gap Schroedinger operators

    Full text link
    A periodic one-dimensional Schroedinger operator is called semifinite-gap if every second gap in its spectrum is eventually closed. We construct explicit examples of semifinite-gap Schroedinger operators in trigonometric functions by applying Darboux transformations to the Whittaker-Hill equation. We give a criterion of the regularity of the corresponding potentials and investigate the spectral properties of the new operators.Comment: Revised versio

    SUSY transformations with complex factorization constants. Application to spectral singularities

    Full text link
    Supersymmetric (SUSY) transformation operators corresponding to complex factorization constants are analyzed as operators acting in the Hilbert space of functions square integrable on the positive semiaxis. Obtained results are applied to Hamiltonians possessing spectral singularities which are non-Hermitian SUSY partners of selfadjoint operators. A new regularization procedure for the resolution of the identity operator in terms of continuous biorthonormal set of the non-Hermitian Hamiltonian eigenfunctions is proposed. It is also shown that the continuous spectrum eigenfunction has zero binorm (in the sense of distributions) at the singular point.Comment: Thanks to A. Sokolov a number of inaccuracies are correcte

    Inverse Spectral-Scattering Problem with Two Sets of Discrete Spectra for the Radial Schroedinger Equation

    Full text link
    The Schroedinger equation on the half line is considered with a real-valued, integrable potential having a finite first moment. It is shown that the potential and the boundary conditions are uniquely determined by the data containing the discrete eigenvalues for a boundary condition at the origin, the continuous part of the spectral measure for that boundary condition, and a subset of the discrete eigenvalues for a different boundary condition. This result extends the celebrated two-spectrum uniqueness theorem of Borg and Marchenko to the case where there is also a continuous spectru
    corecore