123 research outputs found
A flexible component-based robot control architecture for hormonal modulation of behaviour and affect
This document is the Accepted Manuscritpt of a paper published in Proceedings of 18th Annual Conference, TAROS 2017, Guildford, UK, July 19–21, 2017. Under embargo. Embargo end date: 20 July 2018. The final publication is available at Springer via https://link.springer.com/chapter/10.1007%2F978-3-319-64107-2_36. © 2017 Springer, Cham.In this paper we present the foundations of an architecture that will support the wider context of our work, which is to explore the link between affect, perception and behaviour from an embodied perspective and assess their relevance to Human Robot Interaction (HRI). Our approach builds upon existing affect-based architectures by combining artificial hormones with discrete abstract components that are designed with the explicit consideration of influencing, and being receptive to, the wider affective state of the robot
Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis
Anthropogenic CO2 emissions are acidifying the world’s oceans. A growing body of evidence demonstrates that ocean acidification can impact survival, growth, development and physiology of marine invertebrates. Here, we tested the impact of long-term (up to 16 months) and trans-life-cycle (adult, embryo/larvae and juvenile) exposure to elevated pCO2 (1,200 μatm, compared to control 400 μatm) on the green sea urchin Strongylocentrotus droebachiensis. Female fecundity was decreased 4.5-fold when acclimated to elevated pCO2 for 4 months during reproductive conditioning, while no difference was observed in females acclimated for 16 months. Moreover, adult pre-exposure for 4 months to elevated pCO2 had a direct negative impact on subsequent larval settlement success. Five to nine times fewer offspring reached the juvenile stage in cultures using gametes collected from adults previously acclimated to high pCO2 for 4 months. However, no difference in larval survival was observed when adults were pre-exposed for 16 months to elevated pCO2. pCO2 had no direct negative impact on juvenile survival except when both larvae and juveniles were raised in elevated pCO2. These negative effects on settlement success and juvenile survival can be attributed to carry-over effects from adults to larvae and from larvae to juveniles. Our results support the contention that adult sea urchins can acclimate to moderately elevated pCO2 in a matter of a few months and that carry-over effects can exacerbate the negative impact of ocean acidification on larvae and juveniles
An Alpha-Catulin Homologue Controls Neuromuscular Function through Localization of the Dystrophin Complex and BK Channels in Caenorhabditis elegans
The large conductance, voltage- and calcium-dependent potassium (BK) channel serves as a major negative feedback regulator of calcium-mediated physiological processes and has been implicated in muscle dysfunction and neurological disorders. In addition to membrane depolarization, activation of the BK channel requires a rise in cytosolic calcium. Localization of the BK channel near calcium channels is therefore critical for its function. In a genetic screen designed to isolate novel regulators of the Caenorhabditis elegans BK channel, SLO-1, we identified ctn-1, which encodes an α-catulin homologue with homology to the cytoskeletal proteins α-catenin and vinculin. ctn-1 mutants resemble slo-1 loss-of-function mutants, as well as mutants with a compromised dystrophin complex. We determined that CTN-1 uses two distinct mechanisms to localize SLO-1 in muscles and neurons. In muscles, CTN-1 utilizes the dystrophin complex to localize SLO-1 channels near L-type calcium channels. In neurons, CTN-1 is involved in localizing SLO-1 to a specific domain independent of the dystrophin complex. Our results demonstrate that CTN-1 ensures the localization of SLO-1 within calcium nanodomains, thereby playing a crucial role in muscles and neurons
Selective Interaction of Syntaxin 1A with KCNQ2: Possible Implications for Specific Modulation of Presynaptic Activity
KCNQ2/KCNQ3 channels are the molecular correlates of the neuronal M-channels, which play a major role in the control of neuronal excitability. Notably, they differ from homomeric KCNQ2 channels in their distribution pattern within neurons, with unique expression of KCNQ2 in axons and nerve terminals. Here, combined reciprocal coimmunoprecipitation and two-electrode voltage clamp analyses in Xenopus oocytes revealed a strong association of syntaxin 1A, a major component of the exocytotic SNARE complex, with KCNQ2 homomeric channels resulting in a ∼2-fold reduction in macroscopic conductance and ∼2-fold slower activation kinetics. Remarkably, the interaction of KCNQ2/Q3 heteromeric channels with syntaxin 1A was significantly weaker and KCNQ3 homomeric channels were practically resistant to syntaxin 1A. Analysis of different KCNQ2 and KCNQ3 chimeras and deletion mutants combined with in-vitro binding analysis pinpointed a crucial C-terminal syntaxin 1A-association domain in KCNQ2. Pull-down and coimmunoprecipitation analyses in hippocampal and cortical synaptosomes demonstrated a physical interaction of brain KCNQ2 with syntaxin 1A, and confocal immunofluorescence microscopy showed high colocalization of KCNQ2 and syntaxin 1A at presynaptic varicosities. The selective interaction of syntaxin 1A with KCNQ2, combined with a numerical simulation of syntaxin 1A's impact in a firing-neuron model, suggest that syntaxin 1A's interaction is targeted at regulating KCNQ2 channels to fine-tune presynaptic transmitter release, without interfering with the function of KCNQ2/3 channels in neuronal firing frequency adaptation
Lack of evidence for direct phosphorylation of recombinantly expressed P2X2 and P2X3 receptors by protein kinase C
Kinase and phosphatase activities intimately associated with a reconstituted calcium-dependent potassium channel
Type-2 calcium-dependent potassium (KCa) channels from mammalian brain, reconstituted into planar phospholipid bilayers, are modulated by ATP or ATP analogs via an endogenous protein kinase activity intimately associated with the channel (Chung et al., 1991). We show here that the endogenous protein kinase activity is protein kinase C (PKC)-like because (1) modulation by ATP can be mimicked by exogenous PKC, and (2) the effects of ATP can be blocked by PKC(19–36), a specific peptide inhibitor of PKC. Furthermore, adding the PKC inhibitor peptide after the addition of ATP reverses the modulation produced by ATP, suggesting that there is a phosphoprotein phosphatase activity closely associated with type-2 KCa channels. Consistent with this idea is the finding that microcystin, a non-specific phosphatase inhibitor, enhances the modulation of KCa channel activity by ATP. Inhibitor-1, a specific protein inhibitor of phosphoprotein phosphatase-1, also enhances the effect of ATP, suggesting that the endogenous phosphatase activity is phosphatase-1-like. The results imply that type-2 KCa channels exist as part of a regulatory complex that includes a PKC-like protein kinase and a phosphatase-1-like phosphoprotein phosphatase, both of which participate in the modulation of channel function.</jats:p
Properties and rundown of sodium-activated potassium channels in rat olfactory bulb neurons
We have used single-channel recording techniques to investigate the properties of sodium-activated potassium channels (KNa channels) in cultured rat olfactory bulb neurons, and in large neurons in the mitral cell layer of thin slices of olfactory bulb. Ion channels highly selective for potassium over sodium and chloride, and requiring 10–180 mM internal sodium (Nai) for their activation, were present in approximately 75% of inside-out membrane patches detached from cultured olfactory bulb neurons. Most of these patches contained several KNa channels. KNa channels were seen in cell-attached patches only when Nai was raised by including veratridine in the extracellular medium. Preincubation of the cell in TTX or removal of extracellular sodium prevented this effect of veratridine, confirming that the channels observed under these conditions were indeed KNa channels. Lithium did not substitute for Nai in activating these channels. With 150 mM potassium on both sides of the membrane, KNa channels had a single- channel conductance of 172 pS, and at least two subconducting states were observed in addition to this fully open state. Under these ionic conditions, the channels exhibited linear fully open channel current- voltage curves over the potential range of -100 to 0 mV. At voltages more positive than the potassium equilibrium potential, the single- channel currents exhibited inward rectification as a result of sodium block of outward potassium current. The channels opened in bursts, during which they fluctuated between the fully open and closed states, and the substates. Between bursts they sometimes entered a long-lived inactive state that could last for up to several minutes. In addition, KNa channels in the detached patches exhibited rundown, a progressive irreversible loss in activity, over a time course that varied from less than 1 min to longer than 1 hr. Rundown of KNa channel activity in cell- attached patches (in the presence of veratridine) did not occur, suggesting that some intracellular factor necessary for KNa channel activity is lost when the membrane patch is detached from the cell.</jats:p
Electrotonic synapses between Aplysia neurons in situ and in culture: aspects of regulation and measurements of permeability
Properties of electrotonic synapses between L14 neurons in the abdominal ganglion of the marine mollusc Aplysia californica were examined in situ and between unidentified buccal neurons maintained in tissue culture. In culture, depolarizing postsynaptic potentials in response to a train of action potentials showed apparent facilitation with increasing spike number, which was attributable to the low-pass filter properties of electrotonic transmission via gap junctions and to network properties. Gap junctional conductance (gj), calculated from current-clamp data or measured directly under voltage clamp, indicated no significant dependence of gj on transjunctional or inside-outside potential in situ or in culture. Octanol, a local anesthetic agent that reduces gj in many other systems, had no effect on gj between Aplysia neurons. The effect of intracellular acidification, a treatment that rapidly and reversibly uncouples a variety of cell types, reduced gj between Aplysia neurons but did not completely abolish it. The relationship between intracellular pH (pHi), measured with ion- sensitive microelectrodes, and gj was steeper in cultured neurons than in situ and was maximally reduced by 70–80%, as compared to 50% or less in situ at the lowest pHi values tested. The coupling coefficient (k) was reduced less by low pHi than was gj, which could be explained by a simultaneous increase in nonjunctional membrane resistance. Permeability properties of Aplysia electrotonic synapses to a variety of tracer molecules were also examined between identified L 14 neurons in situ and in dissociated buccal, abdominal, and bag neurons in culture. The fluorescent dyes Lucifer yellow, 6-carboxyfluorescein, and dichlorofluorescein (1.2–1.4 nm maximal diameters) did not spread detectably from an injected neuron to its electrically coupled neighbors, regardless of the strength of electrotonic coupling. However, the smaller tetraalkylammonium ions TMA and TEA (diameters 0.66 and 0.8 nm, concentrations measured with ion-selective electrodes), could be detected in neighboring cells within minutes. In culture, transfer of the tetraalkylammonium ions was slow and not easily detectable in cell pairs where gj was low (less than 20 nS). The permeability was as high as 10(-10) cm3/sec in situ and 10(-12) cm3/sec in culture, and values were roughly correlated with simultaneously measured values of gj. Electrotonic synapses in the nervous system of Aplysia, therefore, have a quantitatively different spectrum of sensitivities than has been found for gap junctions of other systems and appear to possess reduced permeability to tracer molecules.</jats:p
- …
