3,291 research outputs found

    Establishing a New Standard for Inclusion in the Classroom

    Get PDF
    This paper challenges the generally accepted norm that special education is a place in which to put students rather than a process for supporting inclusion into the general education curriculum. The process of determining the Least Restricted Environment (LRE) for a student may actually serve to restrict students who have disabilities from participating in classes alongside their non-disabled peers. The paper offers an alternative model for developing lesson plans that can include students of varied learning abilities and identifies qualities that can and must be present in order to create an inclusive classroom

    On phase behavior and dynamical signatures of charged colloidal platelets

    Full text link
    We investigate the competition between anisotropic excluded-volume and repulsive electrostatic interactions in suspensions of thin charged colloidal discs, by means of Monte-Carlo simulations and dynamical characterization of the structures found. We show that the original intrinsic anisotropy of the electrostatic potential between charged platelets, obtained within the non-linear Poisson-Boltzmann formalism, not only rationalizes the generic features of the complex phase diagram of charged colloidal platelets such as Gibbsite and Beidellite clays, but also predicts the existence of novel structures. In addition, we find evidences of a strong slowing down of the dynamics upon increasing density.Comment: 6 pages, 6 Figure

    Cooperative Stimulation of Dendritic Cells by Cryptococcus neoformans Mannoproteins and CpG Oligodeoxynucleotides

    Get PDF
    While mannosylation targets antigens to mannose receptors on dendritic cells (DC), the resultant immune response is suboptimal. We hypothesized that the addition of toll-like receptor (TLR) ligands would enhance the DC response to mannosylated antigens. Cryptococcus neoformans mannoproteins (MP) synergized with CpG-containing oligodeoxynucleotides to stimulate enhanced production of proinflammatory cytokines and chemokines from murine conventional and plasmacytoid DC. Synergistic stimulation required the interaction of mannose residues on MP with the macrophage mannose receptor (MR), CD206. Moreover, synergy with MP was observed with other TLR ligands, including tripalmitoylated lipopeptide (Pam3CSK4), polyinosine-polycytidylic acid (pI:C), and imiquimod. Finally, CpG enhanced MP-specific MHC II-restricted CD4+ T-cell responses by a mechanism dependent upon DC expression of CD206 and TLR9. These data suggest a rationale for vaccination strategies that combine mannosylated antigens with TLR ligands and imply that immune responses to naturally mannosylated antigens on pathogens may be greatly augmented if TLR and MR are cooperatively stimulated.National Institutes of Health (RO1 AI25780, RO1 AI37532, K08 AI 53542

    Direct Inhibition of T-Cell Responses by the Cryptococcus Capsular Polysaccharide Glucuronoxylomannan

    Get PDF
    The major virulence factor of the pathogenic fungi Cryptococcus neoformans and C. gattii is the capsule. Glucuronoxylomannan (GXM), the major component of the capsule, is a high-molecular-weight polysaccharide that is shed during cryptococcosis and can persist in patients after successful antifungal therapy. Due to the importance of T cells in the anticryptococcal response, we studied the effect of GXM on the ability of dendritic cells (DCs) to initiate a T-cell response. GXM inhibited the activation of cryptococcal mannoprotein-specific hybridoma T cells and the proliferation of OVA-specific OT-II T cells when murine bone marrow-derived DCs were used as antigen-presenting cells. Inhibition of OT-II T-cell proliferation was observed when either OVA protein or OVA323-339 peptide was used as antigen, indicating GXM did not merely prevent antigen uptake or processing. We found that DCs internalize GXM progressively over time; however, the suppressive effect did not require DCs, as GXM directly inhibited T-cell proliferation induced by anti-CD3 antibody, concanavalin A, or phorbol-12-myristate-13-acetate/ionomycin. Analysis of T-cell viability revealed that the reduced proliferation in the presence of GXM was not the result of increased cell death. GXM isolated from each of the four major cryptococcal serotypes inhibited the proliferation of human peripheral blood mononuclear cells stimulated with tetanus toxoid. Thus, we have defined a new mechanism by which GXM can impart virulence: direct inhibition of T-cell proliferation. In patients with cryptococcosis, this could impair optimal cell-mediated immune responses, thereby contributing to the persistence of cryptococcal infections. SynopsisInfections due to the pathogenic yeast Cryptococcus are a significant cause of morbidity and mortality in persons with impaired T-cell functions, particularly those with AIDS. The major virulence factor of Cryptococcus is its capsule, which is composed primarily of the polysaccharide glucuronoxylomannan (GXM). The capsule not only surrounds the organism but also is shed during cryptococcosis. GXM is taken up by macrophages in vitro and in vivo; however, little is known about the interaction between GXM and dendritic cells, which are the most potent cells capable of activating T cells. Because of the importance of T cells in the anticryptococcal response, the authors investigated the effect of GXM on the ability of dendritic cells to initiate a T-cell response. They found the polysaccharide was internalized by dendritic cells and inhibited antigen-specific T-cell responses. Furthermore, GXM had a direct, inhibitory effect on T-cell proliferation, independent of the effect on dendritic cells. These findings may help explain the persistence of cryptococcal infections and suggest that GXM could be therapeutic in situations where suppression of T-cell responses is desired.National Institutes of Health (R01 AI25780, R01 AI066087, R01 AI37532

    Interplay of anisotropy in shape and interactions in charged platelet suspensions

    Full text link
    Motivated by the intriguing phase behavior of charged colloidal platelets, we investigate the structure and dynamics of charged repulsive disks by means of Monte-Carlo simulations. The electrostatic interactions are taken into account through an effective two-body potential, obtained within the non-linear Poisson-Boltzmann formalism, which has the form of anisotropic screened Coulomb potential. Recently, we showed that the original intrinsic anisotropy of the electrostatic potential in competition with excluded volume effects leads to a rich phase behavior that not only includes various liquid-crsytalline phases but also predicts the existence of novel structures composed of alternating nematic-antinematic sheets. Here, we examine the structural and dynamical signatures of each of the observed structures for both translational and rotational degrees of freedom. Finally, we discuss the influence of effective charge value and our results in relation to experimental findings on charged platelet suspensions.Comment: 22 pages, 17 figure

    Small-angle scattering of dense, polydisperse granular porous media: Computation free of size effects

    Get PDF
    19 pagesInternational audienceSmall-angle x-ray and neutrons scattering is a widespread experimental tool for the investigation of the microstructure of random heterogeneous materials. Validation of (computer-generated) model microstructures often requires the numerical computation of the scattering intensity, which must be carried out with great care due to finite size effects. In this paper, a new method for this computation is presented. It is superior to previously existing methods for three reasons: First, it applies to any type of microstructure (not necessarily granular). Second, closed-form expressions of the size effects inherent to the proposed method can be rigorously derived and removed (in this sense, our method is free of size effects). Third, the complexity of the new algorithm is linear and the computation can easily be updated to account for local changes of the microstructure, while most existing algorithms are quadratic and any change of the microstructure requires a full recomputation. The present paper provides full derivation and validation of this method. Application to the computation of the scattering intensity of dense, polydisperse assemblies of spheres is then presented. A new, simple algorithm for the generation of these dense configurations is introduced. Finally, the results are critically reviewed in the perspective of hardened cement pastes

    Activity of comets: Gas Transport in the Near-Surface Porous Layers of a Cometary Nucleus

    Full text link
    The gas transport through non-volatile random porous media is investigated numerically. We extend our previous research of the transport of molecules inside the uppermost layer of a cometary surface (Skorov and Rickmann, 1995; Skorov et al. 2001). We assess the validity of the simplified capillary model and its assumptions to simulate the gas flux trough the porous dust mantle as it has been applied in cometary physics. A new microphysical computational model for molecular transport in random porous media formed by packed spheres is presented. The main transport characteristics such as the mean free path distribution and the permeability are calculated for a wide range of model parameters and compared with those obtained by more idealized models. The focus in this comparison is on limitations inherent in the capillary model. Finally a practical way is suggested to adjust the algebraic Clausing formula taking into consideration the nonlinear dependence of permeability on layer porosity. The retrieved dependence allows us to accurately calculate the permeability of layers whose thickness and porosity vary in the range of values expected for the near-surface regions of a cometary nucleus.Comment: 25 pages, 9 figure

    On Brownian flights

    No full text
    International audienceLet K be a compact subset of Rn{\mathbb R}^n. We choose at random with uniform law a point at distance ε\varepsilon of K and start a Brownian motion (BM) from this point. We study the probability that this BM hits K for the first time at a distance r\geq r from the starting point
    corecore