27 research outputs found

    Accentuating institutional brands: A multimodal analysis of the homepages of selected South African universities

    Get PDF
    In seeking to disentangle themselves from the constraints of apartheid, South African universities have immersed themselves in an identity modification process in which they not only seek to redress the past, but also to reposition their identities as equal opportunity and non-racial institutions. In this paper, we investigate how the University of the Western Cape, the University of Cape Town and Stellenbosch University have used visual and verbal semiotics to re-design their identities on their homepages to appeal to diverse national and international clients. Using Multimodal Discourse Analysis (MDA), we show how the multi-semiotic choices work together on the homepages to give the universities differentiated, competitive, powerful and attractive brands. We conclude that the homepages blended cultural semiotic artefacts, historical, global and transformational discourses, and architectural landscapes to construct different brand identities that, in turn, rebrand the universities from edifices of apartheid education to equal opportunity institutions

    Optical Control of Metabotropic Glutamate Receptors

    Get PDF
    G-protein coupled receptors (GPCRs), the largest family of membrane signaling proteins, respond to neurotransmitters, hormones and small environmental molecules. The neuronal function of many GPCRs has been difficult to resolve because of an inability to gate them with subtype-specificity, spatial precision, speed and reversibility. To address this, we developed an approach for opto-chemical engineering native GPCRs. We applied this to the metabotropic glutamate receptors (mGluRs) to generate light-agonized and light-antagonized “LimGluRs”. The light-agonized “LimGluR2”, on which we focused, is fast, bistable, and supports multiple rounds of on/off switching. Light gates two of the primary neuronal functions of mGluR2: suppression of excitability and inhibition of neurotransmitter release. The light-antagonized “LimGluR2block” can be used to manipulate negative feedback of synaptically released glutamate on transmitter release. We generalize the optical control to two additional family members: mGluR3 and 6. The system works in rodent brain slice and in zebrafish in vivo, where we find that mGluR2 modulates the threshold for escape behavior. These light-gated mGluRs pave the way for determining the roles of mGluRs in synaptic plasticity, memory and disease
    corecore