38,455 research outputs found
Unitary relation between a harmonic oscillator of time-dependent frequency and a simple harmonic oscillator with and without an inverse-square potential
The unitary operator which transforms a harmonic oscillator system of
time-dependent frequency into that of a simple harmonic oscillator of different
time-scale is found, with and without an inverse-square potential. It is shown
that for both cases, this operator can be used in finding complete sets of wave
functions of a generalized harmonic oscillator system from the well-known sets
of the simple harmonic oscillator. Exact invariants of the time-dependent
systems can also be obtained from the constant Hamiltonians of unit mass and
frequency by making use of this unitary transformation. The geometric phases
for the wave functions of a generalized harmonic oscillator with an
inverse-square potential are given.Comment: Phys. Rev. A (Brief Report), in pres
Geometric Phase, Hannay's Angle, and an Exact Action Variable
Canonical structure of a generalized time-periodic harmonic oscillator is
studied by finding the exact action variable (invariant). Hannay's angle is
defined if closed curves of constant action variables return to the same curves
in phase space after a time evolution. The condition for the existence of
Hannay's angle turns out to be identical to that for the existence of a
complete set of (quasi)periodic wave functions. Hannay's angle is calculated,
and it is shown that Berry's relation of semiclassical origin on geometric
phase and Hannay's angle is exact for the cases considered.Comment: Submitted to Phys. Rev. Lett. (revised version
On Horizontal and Vertical Separation in Hierarchical Text Classification
Hierarchy is a common and effective way of organizing data and representing
their relationships at different levels of abstraction. However, hierarchical
data dependencies cause difficulties in the estimation of "separable" models
that can distinguish between the entities in the hierarchy. Extracting
separable models of hierarchical entities requires us to take their relative
position into account and to consider the different types of dependencies in
the hierarchy. In this paper, we present an investigation of the effect of
separability in text-based entity classification and argue that in hierarchical
classification, a separation property should be established between entities
not only in the same layer, but also in different layers. Our main findings are
the followings. First, we analyse the importance of separability on the data
representation in the task of classification and based on that, we introduce a
"Strong Separation Principle" for optimizing expected effectiveness of
classifiers decision based on separation property. Second, we present
Hierarchical Significant Words Language Models (HSWLM) which capture all, and
only, the essential features of hierarchical entities according to their
relative position in the hierarchy resulting in horizontally and vertically
separable models. Third, we validate our claims on real-world data and
demonstrate that how HSWLM improves the accuracy of classification and how it
provides transferable models over time. Although discussions in this paper
focus on the classification problem, the models are applicable to any
information access tasks on data that has, or can be mapped to, a hierarchical
structure.Comment: Full paper (10 pages) accepted for publication in proceedings of ACM
SIGIR International Conference on the Theory of Information Retrieval
(ICTIR'16
Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector
In a GaN/AlGaN field-effect terahertz detector, the directional photocurrent
is mapped in the two-dimensional space of the gate voltage and the drain/source
bias. It is found that not only the magnitude, but also the polarity, of the
photocurrent can be tuned. A quasistatic self-mixing model taking into account
the localized terahertz field provides a quantitative description of the
detector characteristics. Strongly localized self-mixing is confirmed. It is
therefore important to engineer the spatial distribution of the terahertz field
and its coupling to the field-effect channel on the sub-micron scale.Comment: 12 pages, 4 figures, submitted to AP
Stable fourfold configurations for small vacancy clusters in silicon from ab initio calculations
Using density-functional-theory calculations, we have identified new stable
configurations for tri-, tetra-, and penta-vacancies in silicon. These new
configurations consist of combinations of a ring-hexavacancy with three, two,
or one interstitial atoms, respectively, such that all atoms remain fourfold.
As a result, their formation energies are lower by 0.6, 1.0, and 0.6 eV,
respectively, than the ``part of a hexagonal ring'' configurations, believed up
to now to be the lowest-energy states
Exact quantum states of a general time-dependent quadratic system from classical action
A generalization of driven harmonic oscillator with time-dependent mass and
frequency, by adding total time-derivative terms to the Lagrangian, is
considered. The generalization which gives a general quadratic Hamiltonian
system does not change the classical equation of motion. Based on the
observation by Feynman and Hibbs, the propagators (kernels) of the systems are
calculated from the classical action, in terms of solutions of the classical
equation of motion: two homogeneous and one particular solutions. The kernels
are then used to find wave functions which satisfy the Schr\"{o}dinger
equation. One of the wave functions is shown to be that of a Gaussian pure
state. In every case considered, we prove that the kernel does not depend on
the way of choosing the classical solutions, while the wave functions depend on
the choice. The generalization which gives a rather complicated quadratic
Hamiltonian is simply interpreted as acting an unitary transformation to the
driven harmonic oscillator system in the Hamiltonian formulation.Comment: Submitted to Phys. Rev.
Characterizing Earth Analogs in Reflected Light: Atmospheric Retrieval Studies for Future Space Telescopes
Space-based high contrast imaging mission concepts for studying rocky
exoplanets in reflected light are currently under community study. We develop
an inverse modeling framework to estimate the science return of such missions
given different instrument design considerations. By combining an exoplanet
albedo model, an instrument noise model, and an ensemble Markov chain Monte
Carlo sampler, we explore retrievals of atmospheric and planetary properties
for Earth twins as a function of signal-to-noise ratio (SNR) and resolution
(). Our forward model includes Rayleigh scattering, single-layer water
clouds with patchy coverage, and pressure-dependent absorption due to water
vapor, oxygen, and ozone. We simulate data at and from
0.4-1.0 m with SNR at 550 nm (i.e., for
HabEx/LUVOIR-type instruments). At these same SNR, we simulate data for WFIRST
paired with a starshade, which includes two photometric points between 0.48-0.6
m and spectroscopy from 0.6-0.97 m. Given our noise model
for WFIRST-type detectors, we find that weak detections of water vapor, ozone,
and oxygen can be achieved with observations with at least / SNR, or / SNR for improved detections. Meaningful constraints
are only achieved with / SNR data. The WFIRST data offer
limited diagnostic information, needing at least SNR = 20 to weakly detect
gases. Most scenarios place limits on planetary radius, but cannot constrain
surface gravity and, thus, planetary mass.Comment: Resubmitted to AAS Journals after incorporating reviewer feedback. 26
pages, 18 figure, 9 table
Commensurability oscillations in the rf conductivity of unidirectional lateral superlattices: measurement of anisotropic conductivity by coplanar waveguide
We have measured the rf magnetoconductivity of unidirectional lateral
superlattices (ULSLs) by detecting the attenuation of microwave through a
coplanar waveguide placed on the surface. ULSL samples with the principal axis
of the modulation perpendicular (S_perp) and parallel (S_||) to the microwave
electric field are examined. For low microwave power, we observe expected
anisotropic behavior of the commensurability oscillations (CO), with CO in
samples S_perp and S_|| dominated by the diffusion and the collisional
contributions, respectively. Amplitude modulation of the Shubnikov-de Haas
oscillations is observed to be more prominent in sample S_||. The difference
between the two samples is washed out with the increase of the microwave power,
letting the diffusion contribution govern the CO in both samples. The failure
of the intended directional selectivity in the conductivity measured with high
microwave power is interpreted in terms of large-angle electron-phonon
scattering.Comment: 8 pages, 5 figure
Observation of pinning mode of stripe phases of 2D systems in high Landau levels
We study the radio-frequency diagonal conductivities of the anisotropic
stripe phases of higher Landau levels near half integer fillings. In the hard
direction, in which larger dc resistivity occurs, the spectrum exhibits a
striking resonance, while in the orthogonal, easy direction, no resonance is
discernable. The resonance is interpreted as a pinning mode of the stripe
phase
- …
