1,277 research outputs found

    Eye movement planning on Single-Sensor-Single-Indicator displays is vulnerable to user anxiety and cognitive load

    Get PDF
    In this study, we demonstrate the effects of anxiety and cognitive load on eye movement planning in an instrument flight task adhering to a single-sensor-single-indicator data visualisation design philosophy. The task was performed in neutral and anxiety conditions, while a low or high cognitive load, auditory n-back task was also performed. Cognitive load led to a reduction in the number of transitions between instruments, and impaired task performance. Changes in self-reported anxiety between the neutral and anxiety conditions positively correlated with changes in the randomness of eye movements between instruments, but only when cognitive load was high. Taken together, the results suggest that both cognitive load and anxiety impact gaze behavior, and that these effects should be explored when designing data visualization displays

    Tuning transcriptional regulation through signaling: A predictive theory of allosteric induction

    Full text link
    Allosteric regulation is found across all domains of life, yet we still lack simple, predictive theories that directly link the experimentally tunable parameters of a system to its input-output response. To that end, we present a general theory of allosteric transcriptional regulation using the Monod-Wyman-Changeux model. We rigorously test this model using the ubiquitous simple repression motif in bacteria by first predicting the behavior of strains that span a large range of repressor copy numbers and DNA binding strengths and then constructing and measuring their response. Our model not only accurately captures the induction profiles of these strains but also enables us to derive analytic expressions for key properties such as the dynamic range and [EC50][EC_{50}]. Finally, we derive an expression for the free energy of allosteric repressors which enables us to collapse our experimental data onto a single master curve that captures the diverse phenomenology of the induction profiles.Comment: Substantial revisions for resubmission (3 new figures, significantly elaborated discussion); added Professor Mitchell Lewis as another author for his continuing contributions to the projec

    Predicting Conformal Aperture Gain From 3-D Aperture and Platform Models

    Get PDF

    Continued monitoring of LMXBs with the Faulkes Telescopes

    Get PDF
    The Faulkes Telescope Project is an educational and research arm of the Las Cumbres Observatory Global Telescope Network (LCOGTN). It has two 2-metre robotic telescopes, located at Haleakala on Maui (FT North) and Siding Spring in Australia (FT South). It is planned for these telescopes to be complemented by a research network of eighteen 1-metre telescopes, along with an educational network of twenty-eight 0.4-metre telescopes, providing 24 hour coverage of both northern and southern hemispheres. We have been conducting a monitoring project of 13 low-mass X-ray binaries (LMXBs) using FT North since early 2006. The introduction of FT South has allowed us to extend this to monitor a total of 30 LMXBs (see target list, Section 4). New instrumentation will allow us to expand this project to include both infrared wavelengths (z and y band) and spectroscopy. Brighter targets (~ 16 - 18 mag.) are imaged weekly in V, R and i’ bands (SNR ~ 50), while fainter ones (> 18 mag.) are observed only in i’ band (SNR ~ 20). We alter this cadence in response to our own analysis or Astronomers Telegrams (ATels)
    corecore