3,199 research outputs found

    Behavior change interventions: the potential of ontologies for advancing science and practice

    Get PDF
    A central goal of behavioral medicine is the creation of evidence-based interventions for promoting behavior change. Scientific knowledge about behavior change could be more effectively accumulated using "ontologies." In information science, an ontology is a systematic method for articulating a "controlled vocabulary" of agreed-upon terms and their inter-relationships. It involves three core elements: (1) a controlled vocabulary specifying and defining existing classes; (2) specification of the inter-relationships between classes; and (3) codification in a computer-readable format to enable knowledge generation, organization, reuse, integration, and analysis. This paper introduces ontologies, provides a review of current efforts to create ontologies related to behavior change interventions and suggests future work. This paper was written by behavioral medicine and information science experts and was developed in partnership between the Society of Behavioral Medicine's Technology Special Interest Group (SIG) and the Theories and Techniques of Behavior Change Interventions SIG. In recent years significant progress has been made in the foundational work needed to develop ontologies of behavior change. Ontologies of behavior change could facilitate a transformation of behavioral science from a field in which data from different experiments are siloed into one in which data across experiments could be compared and/or integrated. This could facilitate new approaches to hypothesis generation and knowledge discovery in behavioral science

    Ethanol reversal of tolerance to the respiratory depressant effects of morphine

    Get PDF
    Opioids are the most common drugs associated with unintentional drug overdose. Death results from respiratory depression. Prolonged use of opioids results in the development of tolerance but the degree of tolerance is thought to vary between different effects of the drugs. Many opioid addicts regularly consume alcohol (ethanol), and post-mortem analyses of opioid overdose deaths have revealed an inverse correlation between blood morphine and ethanol levels. In the present study, we determined whether ethanol reduced tolerance to the respiratory depressant effects of opioids. Mice were treated with opioids (morphine, methadone, or buprenorphine) for up to 6 days. Respiration was measured in freely moving animals breathing 5% CO(2) in air in plethysmograph chambers. Antinociception (analgesia) was measured as the latency to remove the tail from a thermal stimulus. Opioid tolerance was assessed by measuring the response to a challenge dose of morphine (10 mg/kg i.p.). Tolerance developed to the respiratory depressant effect of morphine but at a slower rate than tolerance to its antinociceptive effect. A low dose of ethanol (0.3 mg/kg) alone did not depress respiration but in prolonged morphine-treated animals respiratory depression was observed when ethanol was co-administered with the morphine challenge. Ethanol did not alter the brain levels of morphine. In contrast, in methadone- or buprenorphine-treated animals no respiratory depression was observed when ethanol was co-administered along with the morphine challenge. As heroin is converted to morphine in man, selective reversal of morphine tolerance by ethanol may be a contributory factor in heroin overdose deaths

    Genome-wide signatures of convergent evolution in echolocating mammals

    Get PDF
    Evolution is typically thought to proceed through divergence of genes, proteins, and ultimately phenotypes(1-3). However, similar traits might also evolve convergently in unrelated taxa due to similar selection pressures(4,5). Adaptive phenotypic convergence is widespread in nature, and recent results from a handful of genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level(6-9). Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution(9,10) although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show for the first time that convergence is not a rare process restricted to a handful of loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four new bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Surprisingly we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognised

    The Search for Invariance: Repeated Positive Testing Serves the Goals of Causal Learning

    Get PDF
    Positive testing is characteristic of exploratory behavior, yet it seems to be at odds with the aim of information seeking. After all, repeated demonstrations of one’s current hypothesis often produce the same evidence and fail to distinguish it from potential alternatives. Research on the development of scientific reasoning and adult rule learning have both documented and attempted to explain this behavior. The current chapter reviews this prior work and introduces a novel theoretical account—the Search for Invariance (SI) hypothesis—which suggests that producing multiple positive examples serves the goals of causal learning. This hypothesis draws on the interventionist framework of causal reasoning, which suggests that causal learners are concerned with the invariance of candidate hypotheses. In a probabilistic and interdependent causal world, our primary goal is to determine whether, and in what contexts, our causal hypotheses provide accurate foundations for inference and intervention—not to disconfirm their alternatives. By recognizing the central role of invariance in causal learning, the phenomenon of positive testing may be reinterpreted as a rational information-seeking strategy

    The economics of Theocracy

    Get PDF
    This paper models theocracy as a regime where the clergy in power retains knowledge of the cost of political production but which is potentially incompetent or corrupt. This is contrasted with a secular regime where government is contracted out to a secular ruler, and hence the church loses the possibility to observe costs and creates for itself a hidden-information agency problem. The church is free to choose between regimes – a make-or-buy choice – and we look for the range of environmental parameters that are most conducive to the superiority of theocracy and therefore to its occurrence and persistence, despite its disabilities. Numerical solution of the model indicates that the optimal environment for a theocracy is likely to be one in which the “bad” (high-cost) state is disastrously bad but the probability of its occurrence is not very high. A broad review of the historical evidence yields some suggestive support to the predictions of the model. Finally, the model is shown to be applicable to the make-or-buy-government choices of other groups, such as organized labor and the military

    Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline

    Get PDF
    The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline

    After the sunset: the residual effect of temporary legislation

    Get PDF
    The difference between permanent legislation and temporary legislation is the default rule of termination: permanent legislation governs perpetually, while temporary legislation governs for a limited time. Recent literature on legislative timing rules considers the effect of temporary legislation to stop at the moment of expiration. When the law expires, so does its regulatory effect. This article extends that literature by examining the effect of temporary legislation beyond its expiration. We show that in addition to affecting compliance behavior which depends on statutory enforcement, temporary legislation also affects compliance behavior which does not depend on statutory enforcement, and more generally, organizational behavior after a sunset. When temporary legislation expires therefore, it can continue to administer regulatory and other effects. We specify the conditions for this process and give the optimal legislative response

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT
    corecore