228 research outputs found

    The effect of sex and irritable bowel syndrome on HPA axis response and peripheral glucocorticoid receptor expression

    Get PDF
    Background & Aims: Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been reported in irritable bowel syndrome (IBS). Enhanced HPA axis responses have been associated with reduced glucocorticoid receptor (GR) mediated negative feedback inhibition. We aimed to study the effects of IBS status, sex, or presence of early adverse life events (EAL) on the cortisol response to corticotropin-releasing factor (CRF) and adrenocorticotropic hormone (ACTH), and on GR mRNA expression in peripheral blood mononuclear cells (PBMCs). Methods: Rome III+ IBS patients and healthy controls underwent CRF (1μg/kg ovine) and ACTH (250μg) stimulation tests with serial plasma ACTH and cortisol levels measured (n=116). GR mRNA levels were measured using quantitative PCR (n=143). Area under the curve (AUC) and linear mixed effects models were used to compare ACTH and cortisol response measured across time between groups. Results: There were divergent effects of IBS on the cortisol response to ACTH by sex. In men, IBS was associated with an increased AUC (p= 0.009), but in women AUC was blunted in IBS(p=0.006). Men also had reduced GR mRNA expression (p=0.007). Cumulative exposure to EALs was associated with an increased HPA response. Lower GR mRNA was associated with increased pituitary HPA response and increased severity of overall symptoms and abdominal pain in IBS. Conclusion: This study highlights the importance of considering sex in studies of IBS and the stress response in general. Our findings also provide support for PBMC GR mRNA expression as a peripheral marker of central HPA response

    Misregulated E-Cadherin Expression Associated with an Aggressive Brain Tumor Phenotype

    Get PDF
    BACKGROUND: Cadherins are essential components of the adherens junction complexes that mediate cell-cell adhesion and regulate cell motility. During tissue morphogenesis, changes in cadherin expression (known as cadherin switching) are a common mechanism for altering cell fate. Cadherin switching is also common during epithelial tumor progression, where it is thought to promote tumor invasion and metastasis. E-cadherin is the predominant cadherin expressed in epithelial tissues, but its expression is very limited in normal brain. METHODOLOGY/PRINCIPAL FINDINGS: We identified E-cadherin expression in a retrospective series of glioblastomas exhibiting epithelial or pseudoepithelial differentiation. Unlike in epithelial tissues, E-cadherin expression in gliomas correlated with an unfavorable clinical outcome. Western blotting of two panels of human GBM cell lines propagated either as xenografts in nude mice or grown under conventional cell culture conditions confirmed that E-cadherin expression is rare. However, a small number of xenograft lines did express E-cadherin, its expression correlating with increased invasiveness when the cells were implanted orthotopically in mouse brain. In the conventionally cultured SF767 glioma cell line, E-cadherin expression was localized throughout the plasma membrane rather than being restricted to areas of cell-cell contact. ShRNA knockdown of E-cadherin in these cells resulted in decreased proliferation and migration in vitro. CONCLUSIONS/SIGNIFICANCE: Our data shows an unexpected correlation between the abnormal expression of E-cadherin in a subset of GBM tumor cells and the growth and migration of this aggressive brain tumor subtype

    Brain metastases-derived extracellular vesicles induce binding and aggregation of low-density lipoprotein

    Get PDF
    Background: Cancer cell-derived extracellular vesicles (EVs) have previously been shown to contribute to pre-metastatic niche formation. Specifically, aggressive tumors secrete pro-metastatic EVs that travel in the circulation to distant organs to modulate the microenvironment for future metastatic spread. Previous studies have focused on the interface between pro-metastatic EVs and epithelial/endothelial cells in the pre-metastatic niche. However, EV interactions with circulating components such as low-density lipoprotein (LDL) have been overlooked. Results: This study demonstrates that EVs derived from brain metastases cells (Br-EVs) and corresponding regular cancer cells (Reg-EVs) display different interactions with LDL. Specifically, Br-EVs trigger LDL aggregation, and the presence of LDL accelerates Br-EV uptake by monocytes, which are key components in the brain metastatic niche. Conclusions: Collectively, these data are the first to demonstrate that pro-metastatic EVs display distinct interactions with LDL, which impacts monocyte internalization of EVs. [Figure not available: see fulltext.

    Solution fibre spinning technique for the fabrication of tuneable decellularised matrix-laden fibres and fibrous micromembranes.

    Get PDF
    UNLABELLED: Recreating tissue-specific microenvironments of the extracellular matrix (ECM) in vitro is of broad interest for the fields of tissue engineering and organ-on-a-chip. Here, we present biofunctional ECM protein fibres and suspended membranes, with tuneable biochemical, mechanical and topographical properties. This soft and entirely biologic membrane scaffold, formed by micro-nano-fibres using low voltage electrospinning, displays three unique characteristics for potential cell culture applications: high-content of key ECM proteins, single-layered mesh membrane, and flexibility for in situ integration into a range of device setups. Extracellular matrix (ECM) powder derived from urinary bladder, was used to fabricate the ECM-laden fibres and membranes. The highest ECM concentration in the dry protein fibre was 50 wt%, with the rest consisting of gelatin. Key ECM proteins, including collagen IV, laminin, and fibronectin, were shown to be preserved post the biofabrication process. The single fibre tensile Young's modulus can be tuned for over two orders of magnitude between ∼600 kPa and 50 MPa depending on the ECM content. Combining the fibre mesh printing with 3D printed or microfabricated structures, culture devices were constructed for endothelial layer formation, and a trans-membrane co-culture formed by glomerular cell types of podocytes and glomerular endothelial cells, demonstrating feasibility of the membrane culture. Our cell culture observation points to the importance of membrane mechanical property and re-modelling ability as a factor for soft membrane-based cell cultures. The ECM-laden fibres and membranes presented here would see potential applications in in vitro assays, and tailoring structure and biological functions of tissue engineering scaffolds. STATEMENT OF SIGNIFICANCE: Recreating tissue-specific microenvironments of the extracellular matrix (ECM) is of broad interest for the fields of tissue engineering and organ-on-a-chip. Both the biochemical and biophysical signatures of the engineered ECM interplay to affect cell response. Currently, there are limited biomaterials processing methods which allow to design ECM membrane properties flexibly and rapidly. Solvents and additives used in many existing processes also induced unwanted ECM protein degradation and toxic residues. This paper presents a solution fibre spinning technique, where careful selection of the solution combination led to well-preserved ECM proteins with tuneable composition. This technique also provides a highly versatile approach to fabricate ECM fibres and membranes, leading to designable fibre Young's modulus for over two orders of magnitude.This work is supported by the Engineering and Physical Sciences Research Council (EPSRC) UK (EP/M018989/1) and European Research Council (ERC-StG, 758865). The authors thank the studentship and funding supports from the EPSRC DTA (Z.L.), the WD Armstrong Trust (I.M.L), the Swiss National Science Foundation (P300P2_171219) and the Centre for Misfolding Disease of the University of Cambridge (F.S.R.)

    The Bcl I single nucleotide polymorphism of the human glucocorticoid receptor gene h-GR/NR3C1 promoter in patients with bronchial asthma: pilot study

    Get PDF
    Bcl I in the promoter polymorphism observed within h-GR/NR3C1 gene may play an important role in the development of bronchial asthma and resistance to GCs in the severe bronchial asthma. The aim of the investigation was to study the correlation between this h-GR/NR3C1 gene polymorphism and occurrence of asthma in the population of Polish asthmatics. Peripheral blood was obtained from 70 healthy volunteers and 59 asthma patients. Structuralized anamnesis, spirometry and allergy skin prick tests were performed in all participants. Genotyping was carried out with PCR–RFLP method. In healthy, non-atopic population variants of Bcl I: GG, GC, CC were found with frequency 0.129/0.471/0.400, respectively. In asthma patients Bcl I: GG, GC, CC occurred with respective frequencies of 0.410/0.462/0.128. Chi-square analysis revealed a significantly different (P < 0.05) distribution between cases and controls for the Bcl I polymorphism. The Bcl I polymorphism of h-GR/NR3C1 gene is significantly associated with bronchial asthma, susceptibility to the development of severe form and resistance to GCs in Polish population

    VEGF and Angiopoietin-1 Exert Opposing Effects on Cell Junctions by Regulating the Rho GEF Syx

    Get PDF
    Vascular endothelial growth factor (VEGF) and Ang1 (Angiopoietin-1) have opposing effects on vascular permeability, but the molecular basis of these effects is not fully known. We report in this paper that VEGF and Ang1 regulate endothelial cell (EC) junctions by determining the localization of the RhoA-specific guanine nucleotide exchange factor Syx. Syx was recruited to junctions by members of the Crumbs polarity complex and promoted junction integrity by activating Diaphanous. VEGF caused translocation of Syx from cell junctions, promoting junction disassembly, whereas Ang1 maintained Syx at the junctions, inducing junction stabilization. The VEGF-induced translocation of Syx from EC junctions was caused by PKD1 (protein kinase D1)-mediated phosphorylation of Syx at Ser806, which reduced Syx association to its junctional anchors. In support of the pivotal role of Syx in regulating EC junctions, syx−/− mice had defective junctions, resulting in vascular leakiness, edema, and impaired heart function

    Effect of dioxins on regulation of tyrosine hydroxylase gene expression by aryl hydrocarbon receptor: a neurotoxicology study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dioxins and related compounds are suspected of causing neurological disruption. Epidemiological studies indicated that exposure to these compounds caused neurodevelopmental disturbances such as learning disability and attention deficit hyperactivity disorder, which are thought to be closely related to dopaminergic dysfunction. Although the molecular mechanism of their actions has not been fully investigated, a major participant in the process is aryl hydrocarbon receptor (AhR). This study focused on the effect of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) exposure on the regulation of TH, a rate-limiting enzyme of dopamine synthesis, gene expression by AhR.</p> <p>Methods</p> <p>N2a-Rβ cells were established by transfecting murine neuroblastoma Neuro2a with the rat AhR cDNA. TH expression induced by TCDD was assessed by RT-PCR and Western blotting. Participation of AhR in TCDD-induced TH gene expression was confirmed by suppressing AhR expression using the siRNA method. Catecholamines including dopamine were measured by high-performance liquid chromatography. A reporter gene assay was used to identify regulatory motifs in the promoter region of TH gene. Binding of AhR with the regulatory motif was confirmed by an electrophoretic mobility shift assay (EMSA).</p> <p>Results</p> <p>Induction of TH by TCDD through AhR activation was detected at mRNA and protein levels. Induced TH protein was functional and its expression increased dopamine synthesis. The reporter gene assay and EMSA indicated that AhR directly regulated TH gene expression. Regulatory sequence called aryl hydrocarbon receptor responsive element III (AHRE-III) was identified upstream of the TH gene from -285 bp to -167 bp. Under TCDD exposure, an AhR complex was bound to AHRE-III as well as the xenobiotic response element (XRE), though AHRE-III was not identical to XRE, the conventional AhR-binding motif.</p> <p>Conclusion</p> <p>Our results suggest TCDD directly regulate the dopamine system by TH gene transactivation via an AhR-AHRE-III-mediated pathway. The AhR- mediated pathway could have a particular AhR-mediated genomic control pathway transmitting the effects of TCDD action to target cells in the development of dopaminergic disabilities.</p

    Comprehensive overview of the structure and regulation of the glucocorticoid receptor

    Get PDF
    Glucocorticoids are among the most prescribed drugs worldwide for the treatment of numerous immune and inflammatory disorders. They exert their actions by binding to the glucocorticoid receptor (GR), a member of the nuclear receptor superfamily. There are several GR isoforms resulting from alternative RNA splicing and translation initiation of the GR transcript. Additionally, these isoforms are all subject to several transcriptional, post-transcriptional, and post-translational modifications, all of which affect the protein's stability and/or function. In this review, we summarize recent knowledge on the distinct GR isoforms and the processes that generate them. We also review the importance of all known transcriptional, post-transcriptional, and post-translational modifications, including the regulation of GR by microRNAs. Moreover, we discuss the crucial role of the putative GR-bound DNA sequence as an allosteric ligand influencing GR structure and activity. Finally, we describe how the differential composition and distinct regulation at multiple levels of different GR species could account for the wide and diverse effects of glucocorticoids
    corecore