999 research outputs found
Digital pulse-shape discrimination of fast neutrons and gamma rays
Discrimination of the detection of fast neutrons and gamma rays in a liquid
scintillator detector has been investigated using digital pulse-processing
techniques. An experimental setup with a 252Cf source, a BC-501 liquid
scintillator detector, and a BaF2 detector was used to collect waveforms with a
100 Ms/s, 14 bit sampling ADC. Three identical ADC's were combined to increase
the sampling frequency to 300 Ms/s. Four different digital pulse-shape analysis
algorithms were developed and compared to each other and to data obtained with
an analogue neutron-gamma discrimination unit. Two of the digital algorithms
were based on the charge comparison method, while the analogue unit and the
other two digital algorithms were based on the zero-crossover method. Two
different figure-of-merit parameters, which quantify the neutron-gamma
discrimination properties, were evaluated for all four digital algorithms and
for the analogue data set. All of the digital algorithms gave similar or better
figure-of-merit values than what was obtained with the analogue setup. A
detailed study of the discrimination properties as a function of sampling
frequency and bit resolution of the ADC was performed. It was shown that a
sampling ADC with a bit resolution of 12 bits and a sampling frequency of 100
Ms/s is adequate for achieving an optimal neutron-gamma discrimination for
pulses having a dynamic range for deposited neutron energies of 0.3-12 MeV. An
investigation of the influence of the sampling frequency on the time resolution
was made. A FWHM of 1.7 ns was obtained at 100 Ms/s.Comment: 26 pages, 14 figures, submitted to Nuclear Instruments and Methods in
Physics Research
New capabilities for Monte Carlo simulation of deuteron transport and secondary products generation
Several important research programs are dedicated to the development of facilities based on deuteron accelerators. In designing these facilities, the definition of a validated computational approach able to simulate deuteron transport and evaluate deuteron interactions and production of secondary particles with acceptable precision is a very important issue. Current Monte Carlo codes, such as MCNPX or PHITS, when applied for deuteron transport calculations use built-in semi-analytical models to describe deuteron interactions. These models are found unreliable in predicting neutron and photon generated by low energy deuterons, typically present in those facilities.
We present a new computational tool, resulting from an extension of the MCNPX code, which improve significantly the treatment of problems where any secondary product (neutrons, photons, tritons, etc.) generated by low energy deuterons reactions could play a major role. Firstly, it handles deuteron evaluated data libraries, which allow describing better low deuteron energy interactions. Secondly, it includes a reduction variance technique for production of secondary particles by charged particle-induced nuclear interactions, which allow reducing drastically the computing time needed in transport and nuclear response calculations. Verification of the computational tool is successfully achieved. This tool can be very helpful in addressing design issues such as selection of the dedicated neutron production target and accelerator radioprotection analysis. It can be also helpful to test the deuteron cross-sections under development in the frame of different international nuclear data program
Generalized seniority scheme in light Sn isotopes
The yrast generalized seniority states are compared with the corresponding
shell model states for the case of the Sn isotopes Sn. For most of
the cases the energies agree within 100 keV and the overlaps of the wave
functions are greater than 0.7.Comment: 8 pages, revtex. Submitted to Phys. Rev.
On the discovery of doubly-magic Ni
The paper reports on the first observation of doubly-magic Nickel-48 in an
experimental at the SISSI/LISE3 facility of GANIL. Four Nickel-48 isotopes were
identified. In addition, roughly 100 Nickel-49, 50 Iron-45, and 290 Chromium-42
isotopes were observed. This opens the possibility to search for two-proton
emission from these nuclei.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. Let
Decay of proton-rich nuclei between 39Ti and 49Ni
Decay studies of very neutron-deficient nuclei ranging from 39Ti to 49Ni have
been performed during a projectile fragmentation experiment at the GANIL/LISE3
separator. For all nuclei studied in this work, 39,40Ti, 42,43Cr, 46Mn,
45,46,47Fe and 49Ni, half-lives and decay spectra have been measured. In a few
cases, gamma coincidence measurements helped to successfully identify the
initial and final states of transitions. In these cases, partial decay scheme
are proposed. For the most exotic isotopes, 39Ti, 42Cr, 45Fe and 49Ni, which
are candidates for two-proton radioactivity from the ground state, no clear
evidence of this process is seen in our spectra and we conclude rather on a
delayed particle decay.Comment: 12 pages, 15 figures, submitted for publication in Eur. Phys. J.
The beta-decay of 22Al
In an experiment performed at the LISE3 facility of GANIL, we studied the
decay of 22Al produced by the fragmentation of a 36Ar primary beam. A
beta-decay half-life of 91.1 +- 0.5 ms was measured. The beta-delayed one- and
two-proton emission as well as beta-alpha and beta-delayed gamma decays were
measured and allowed us to establish a partial decay scheme for this nucleus.
New levels were determined in the daughter nucleus 22Mg. The comparison with
model calculations strongly favours a spin-parity of 4+ for the ground state of
22Al
Coulomb breakup effects on the optical potentials of weakly bound nuclei
The optical potential of halo and weakly bound nuclei has a long range part
due to the coupling to breakup that damps the elastic scattering angular
distributions. In order to describe correctly the breakup channel in the case
of scattering on a heavy target, core recoil effects have to be taken into
account. We show here that core recoil and nuclear breakup of the valence
nucleon can be consistently taken into account. A microscopic absorptive
potential is obtained within a semiclassical approach and its characteristics
can be understood in terms of the properties of the halo wave function and of
the reaction mechanism. Results for the case of medium to high energy reactions
are presented.Comment: 25 latex pages, 4 tables, 6 figures. Submitted to Nucl. Phys.
First observation of 55,56Zn
In an experiment at the SISSI/LISE3 facility of GANIL, the most proton-rich
zinc isotopes 55,56Zn have been observed for the first time. The experiment was
performed using a high-intensity 58Ni beam at 74.5 MeV/nucleon impinging on a
nickel target. The identification of 55,56Zn opens the way to 54Zn, a good
candidate for two-proton radioactivity according to theoretical predictions.Comment: 2 pages, 1 figure, accepted for publication in Eur. Phys. J.
Gamow-Teller Strength in the Region of Sn
New calculations are presented for Gamow-Teller beta decay of nuclei near
Sn. Essentially all of the Sn Gamow-Teller decay strength is
predicted to go to a single state at an excitation energy of 1.8 MeV in
In. The first calculations are presented for the decays of neighboring
odd-even and odd-odd nuclei which show, in contrast to Sn, surprisingly
complex and broad Gamow-Teller strength distributions. The results are compared
to existing experimental data and the resulting hindrance factors are
discussed.Comment: 12 pages (latex) and 2 figures available on reques
- …
