5,145,593 research outputs found

    Wonderful compactification of an arrangement of subvarieties

    Full text link
    We define the wonderful compactification of an arrangement of subvarieties. Given a complex nonsingular algebraic variety YY and certain collection G\mathcal{G} of subvarieties of YY, the wonderful compactification YGY_\mathcal{G} can be constructed by a sequence of blow-ups of YY along the subvarieties of the arrangement. This generalizes the Fulton-MacPherson configuration spaces and the wonderful models given by De Concini and Procesi. We give a condition on the order of blow-ups in the construction of YGY_\mathcal{G} such that each blow-up is along a nonsingular center.Comment: 30 pages, presentation is improved, to appear in the Michigan Mathematical Journa

    Energy dependent kinetic freeze-out temperature and transverse flow velocity in high energy collisions

    Full text link
    Transverse momentum spectra of negative and positive pions produced at mid-(pseudo)rapidity in inelastic or non-single-diffractive proton-proton collisions and in central nucleus-nucleus collisions over an energy range from a few GeV to above 10 TeV are analyzed by a (two-component) blast-wave model with Boltzmann-Gibbs statistics and with Tsallis statistics respectively. The model results are in similarly well agreement with the experimental data measured by a few productive collaborations who work at the Heavy Ion Synchrotron (SIS), Super Proton Synchrotron (SPS), Relativistic Heavy Ion Collider (RHIC), and Large Hadron Collider (LHC), respectively. The energy dependent kinetic freeze-out temperature and transverse flow velocity are obtained and analyzed. Both the quantities have quick increase from the SIS to SPS, and slight increase or approximate invariability from the top RHIC to LHC. Around the energy bridge from the SPS to RHIC, the considered quantities in proton-proton collisions obtained by the blast-wave model with Boltzmann-Gibbs statistics show more complex energy dependent behavior comparing with the results in other three cases.Comment: 16 pages, 4 figures. The European Physical Journal A, accepted. arXiv admin note: text overlap with arXiv:1805.0334

    Successive AF/DF Relaying in the Cooperative DS-CDMA Uplink: Capacity Analysis and its System Architecture

    No full text
    A successive relaying aided network (SRAN) is designed for a multi-user spread-spectrum scenario conceived for noncoherent (NC) detection in order to convert the typical 50% half-duplex relaying-induced throughput loss to a potential user-load reduction of the CDMA system, where the NC allows us to avoid the extra power consumption imposed by channel estimation. We commence by evaluating the noncoherent Discrete-input Continuous-output Memoryless Channel (DCMC) capacity of both the Amplify-and-Forward (AF) based and of the Decode-and-Forward (DF) based SRAN in the DS-CDMA uplink. Whilst NC detection has the added benefit of eliminating both the pilot-overhead and power-hungry channel estimation, it tends to form an error-floor at high Doppler frequencies. We mitigate this problem using multiple-symbol detection, which increases the detection complexity upon extending the detection window. Finally, a relay-aided soft-input soft-output Multiple-Symbol Differential Sphere Detection (SISO-MSDSD) CDMA regime is proposed, which significantly reduces the system’s complexity without sacrificing its performance

    Quantum phase transition in a three-level atom-molecule system

    Full text link
    We adopt a three-level bosonic model to investigate the quantum phase transition in an ultracold atom-molecule conversion system which includes one atomic mode and two molecular modes. Through thoroughly exploring the properties of energy level structure, fidelity, and adiabatical geometric phase, we confirm that the system exists a second-order phase transition from an atommolecule mixture phase to a pure molecule phase. We give the explicit expression of the critical point and obtain two scaling laws to characterize this transition. In particular we find that both the critical exponents and the behaviors of ground-state geometric phase change obviously in contrast to a similar two-level model. Our analytical calculations show that the ground-state geometric phase jumps from zero to ?pi/3 at the critical point. This discontinuous behavior has been checked by numerical simulations and it can be used to identify the phase transition in the system.Comment: 8 pages,8 figure

    Search for strong gravitational lensing effect in the current GRB data of BATSE

    Full text link
    Because gamma-ray bursts (GRBs) trace the high-z Universe, there is an appreciable probability for a GRB to be gravitational lensed by galaxies in the universe. Herein we consider the gravitational lensing effect of GRBs contributed by the dark matter halos in galaxies. Assuming that all halos have the singular isothermal sphere (SIS) mass profile in the mass range 1010h1M<M<2×1013h1M10^{10} h^{-1} M_\odot < M < 2\times 10^{13} h^{-1}M_\odot and all GRB samples follow the intrinsic redshift distribution and luminosity function derived from the Swift LGRBs sample, we calculated the gravitational lensing probability in BATSE, Swift/BAT and Fermi/GBM GRBs, respectively. With an derived probability result in BATSE GRBs, we searched for lensed GRB pairs in the BATSE 5B GRB Spectral catalog. The search did not find any convincing gravitationally lensed events. We discuss our result and future observations for GRB lensing observation.Comment: 18 pages, 8 figure

    A Higgs Mass Shift to 125 GeV and A Multi-Jet Supersymmetry Signal: Miracle of the Flippons at the \sqrt{s} = 7 TeV LHC

    Get PDF
    We describe a model named No-Scale F-SU(5) which is simultaneously capable of explaining the dual signals emerging at the LHC of i) a 124-126 GeV Higgs boson mass m_h, and ii) tantalizing low-statistics excesses in the multi-jet data which may attributable to supersymmetry. These targets tend to be mutually exclusive in more conventional approaches. The unified mechanism responsible for both effects is the introduction of a rather unique set of vector-like multiplets at the TeV scale, dubbed flippons, which i) can elevate m_h by around 3-4 GeV via radiative loop corrections, and ii) flatten the running of the strong coupling and color-charged gaugino, resulting in a prominent collider signal from production of light gluino pairs. This well motivated theoretical framework maintains consistency with all key phenomenological constraints, and all residual parameterization freedom may in principle be fixed by a combination of the two experiments described. We project that the already collected luminosity of 5 fb^-1 may be sufficient to definitively establish the status of this model, given appropriate data selection cuts.Comment: Physics Letters B version, 10 pages, 3 figures, 2 tables. arXiv admin note: text overlap with arXiv:1105.398

    Service and price competition when customers are naive

    Full text link
    We consider a system of two service providers each with a separate queue. Customers choose one queue to join upon arrival and can switch between queues in real time before entering service to maximize their spot utility, which is a function of price and queue length. We characterize the steady-state distribution for queue lengths, and then investigate a two-stage game in which the two service providers first simultaneously select service rates and then simultaneously charge prices. Our results indicate that neither service provider will have both a faster service and a lower price than its competitor. When price plays a less significant role in customers service selection relative to queue length or when the two service providers incur comparable costs for building capacities, they will not engage in price competition. When price plays a significant role and the capacity costs at the service providers sufficiently differ, they will adopt substitutable competition instruments: the lower cost service provider will build a faster service and the higher cost service provider will charge a lower price. Comparing our results to those in the existing literature, we find that the service providers invest in lower service rates, engage in less intense price competition, and earn higher profits, while customers wait in line longer when they are unable to infer service rates and are naive in service selection than when they can infer service rates to make sophisticated choices. The customers jockeying behavior further lowers the service providers capacity investment and lengthens the customers duration of stay
    corecore