571,388 research outputs found
Sino the Times: three spoken drama productions on the Beijing stage
Today's modern theatre in Beijing shows new talents and directions as well as problems that are part of the uncertainties of Chinese society — in what may be the most intriguing transitional period in Chinese history
Making Clean Energy with a Kerr Black Hole: a Tokamak Model for Gamma-Ray Bursts
In this paper we present a model for making clean energy with a Kerr black
hole. Consider a Kerr black hole with a dense plasma torus spinning around it.
A toroidal electric current flows on the surface of the torus, which generates
a poloidal magnetic field outside the torus. On the surface of the tours the
magnetic field is parallel to the surface. The closed magnetic field lines
winding around the torus compress and confine the plasma in the torus, as in
the case of tokamaks. Though it is unclear if such a model is stable, we look
into the consequences if the model is stable. If the magnetic field is strong
enough, the baryonic contamination from the plasma in the torus is greatly
suppressed by the magnetic confinement and a clean magnetosphere of
electron-positron pairs is built up around the black hole. Since there are no
open magnetic field lines threading the torus and no accretion, the power of
the torus is zero. If some magnetic field lines threading the black hole are
open and connect with loads, clean energy can be extracted from the Kerr black
hole by the Blandford-Znajek mechanism.
The model may be relevant to gamma-ray bursts. The energy in the Poynting
flux produced by the Blandford-Znajek mechanism is converted into the kinetic
energy of the electron-positron pairs in the magnetosphere around the black
hole, which generates two oppositely directed jets of electron-positron pairs
with super-high bulk Lorentz factors. The jets collide and interact with the
interstellar medium, which may produce gamma-ray bursts and the afterglows.Comment: 14 pages, 1 figure, accepted by Ap
Observational constraints on tachyon and DBI inflation
We present a systematic method for evaluation of perturbation observables in
non-canonical single-field inflation models within the slow-roll approximation,
which allied with field redefinitions enables predictions to be established for
a wide range of models. We use this to investigate various non-canonical
inflation models, including Tachyon inflation and DBI inflation. The Lambert
function will be used extensively in our method for the evaluation of
observables. In the Tachyon case, in the slow-roll approximation the model can
be approximated by a canonical field with a redefined potential, which yields
predictions in better agreement with observations than the canonical
equivalents. For DBI inflation models we consider contributions from both the
scalar potential and the warp geometry. In the case of a quartic potential, we
find a formula for the observables under both non-relativistic and relativistic
behaviour of the scalar DBI inflaton. For a quadratic potential we find two
branches in the non-relativistic case, determined by the competition of model
parameters, while for the relativistic case we find consistency with results
already in the literature. We present a comparison to the latest Planck
satellite observations. Most of the non-canonical models we investigate,
including the Tachyon, are better fits to data than canonical models with the
same potential, but we find that DBI models in the slow-roll regime have
difficulty in matching the data.Comment: 36 pages, 3 figures. Revisions to title, additional motivation,
inclusion of some numerical tests of our result
Variable selection using MM algorithms
Variable selection is fundamental to high-dimensional statistical modeling.
Many variable selection techniques may be implemented by maximum penalized
likelihood using various penalty functions. Optimizing the penalized likelihood
function is often challenging because it may be nondifferentiable and/or
nonconcave. This article proposes a new class of algorithms for finding a
maximizer of the penalized likelihood for a broad class of penalty functions.
These algorithms operate by perturbing the penalty function slightly to render
it differentiable, then optimizing this differentiable function using a
minorize-maximize (MM) algorithm. MM algorithms are useful extensions of the
well-known class of EM algorithms, a fact that allows us to analyze the local
and global convergence of the proposed algorithm using some of the techniques
employed for EM algorithms. In particular, we prove that when our MM algorithms
converge, they must converge to a desirable point; we also discuss conditions
under which this convergence may be guaranteed. We exploit the
Newton-Raphson-like aspect of these algorithms to propose a sandwich estimator
for the standard errors of the estimators. Our method performs well in
numerical tests.Comment: Published at http://dx.doi.org/10.1214/009053605000000200 in the
Annals of Statistics (http://www.imstat.org/aos/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Magneto-Centrifugal Launching of Jets from Accretion Disks. I: Cold Axisymmetric Flows
The magneto-centrifugal model for jet formation is studied by time-dependent
simulations reaching steady state in a cold gas with negligible fluid pressure,
in an axisymmetric geometry, using a modification of the Zeus3D code adapted to
parallel computers. The number of boundary conditions imposed at the coronal
base takes into account the existence of the fast and Alfvenic critical
surfaces, avoiding over-determination of the flow. The size and shape of the
computational box is chosen to include these critical surfaces, reducing the
influence of the outer boundary conditions. As there is a region, near the
origin, where the inclination of field lines to the axis is too small to drive
a centrifugal wind, we inject a thin, axial jet, expected to form
electromagnetically near black holes. Acceleration and collimation appear for
wide generic conditions. A reference run is shown in detail, with a wind
leaving the computational volume in the axial direction with a poloidal
velocity equal to 4 times the poloidal Alfven speed, collimated inside 11
degrees. Finally, the critical surfaces, fieldlines, thrust, energy, torque and
mass discharge of the outgoing wind are shown for simulations with various
profiles of mass and magnetic flux at the base of the corona.Comment: 27 pages, including 10 figures and 2 tables. To appear in ApJ (Dec
1999). Revised version clarifies the abstract, section 3.2.4, conclusions and
appendix, adds a simulation to section 4.2, and updates the reference
Extracting Energy from Accretion into Kerr Black Hole
The highest efficiency of converting rest mass into energy by accreting
matter into a Kerr black hole is ~ 31% (Thorne 1974). We propose a new process
in which periods of accretion from a thin disk, and the associated spin-up of
the black hole, alternate with the periods of no accretion and magnetic
transfer of energy from the black hole to the disk. These cycles can repeat
indefinitely, at least in principle, with the black hole mass increasing by ~
66% per cycle, and up to ~ 43% of accreted rest mass radiated away by the disk.Comment: 4 pages, 1 figur
- …
