6,744 research outputs found

    Study on space-time structure of Higgs boson decay using HBT correlation Method in e+^+e^- collision at s\sqrt{s}=250 GeV

    Full text link
    The space-time structure of the Higgs boson decay are carefully studied with the HBT correlation method using e+^+e^- collision events produced through Monte Carlo generator PYTHIA 8.2 at s\sqrt{s}=250GeV. The Higgs boson jets (Higgs-jets) are identified by H-tag tracing. The measurement of the Higgs boson radius and decay lifetime are derived from HBT correlation of its decay final state pions inside Higgs-jets in the e+^+e^- collisions events with an upper bound of RH1.03±0.05R_H \le 1.03\pm 0.05 fm and τH(1.29±0.15)×107\tau_H \le (1.29\pm0.15)\times 10^{-7} fs. This result is consistent with CMS data.Comment: 7 pages,3 figure

    Asymmetric spin-wave dispersion due to Dzyaloshinskii-Moriya interaction in an ultrathin Pt/CoFeB film

    Full text link
    Employing Brillouin spectroscopy, strong interfacial Dzyaloshinskii-Moriya interactions have been observed in an ultrathin Pt/CoFeB film. Our micromagnetic simulations show that spin-wave nonreciprocity due to asymmetric surface pinning is insignificant for the 0.8nmthick CoFeB film studied. The observed high asymmetry of the monotonic spin wave dispersion relation is thus ascribed to strong Dzyaloshinskii-Moriya interactions present at the Pt/CoFeB interface. Our findings should further enhance the significance of CoFeB as an important material for magnonic, spintronic and skyrmionic applications.Comment: 12 pages, 4 figure

    High density NV sensing surface created via He^(+) ion implantation of (12)^C diamond

    Get PDF
    We present a promising method for creating high-density ensembles of nitrogen-vacancy centers with narrow spin-resonances for high-sensitivity magnetic imaging. Practically, narrow spin-resonance linewidths substantially reduce the optical and RF power requirements for ensemble-based sensing. The method combines isotope purified diamond growth, in situ nitrogen doping, and helium ion implantation to realize a 100 nm-thick sensing surface. The obtained 10^(17) cm^(-3) nitrogen-vacancy density is only a factor of 10 less than the highest densities reported to date, with an observed spin resonance linewidth over 10 times more narrow. The 200 kHz linewidth is most likely limited by dipolar broadening indicating even further reduction of the linewidth is desirable and possible.Comment: 5 pages including references. 3 figure

    Strongly-coupled nanotube electromechanical resonators

    Full text link
    Coupling an electromechanical resonator with carbon-nanotube quantum dots is a significant method to control both the electronic charge and the spin quantum states. By exploiting a novel micro-transfer technique, we fabricate two strongly-coupled and electrically-tunable mechanical resonators on a single carbon nanotube for the first time. The frequency of the two resonators can be individually tuned by the bottom gates, and strong coupling is observed between the electron charge and phonon modes of each resonator. Furthermore, the conductance of either resonator can be nonlocally modulated by the phonon modes in the other resonator. Strong coupling is observed between the phonon modes of the two resonators, which provides an effective long distance electron-electron interaction. The generation of phonon-mediated-spin entanglement is also theoretically analyzed for the two resonators. This strongly-coupled nanotube electromechanical resonator array provides an experimental platform for future studies of the coherent electron-phonon interaction, the phonon mediated long-distance electron interaction, and entanglement state generation
    corecore