16,601 research outputs found
Renormalization group improved predictions for production at hadron colliders
We study the factorization and resummation of the production
at hadron colliders. The cross section in the threshold limit can be factorized
into a convolution of hard and soft functions and parton distribution functions
with the soft-collinear effective theory. We calculate the next-to-leading
order soft function for the associated production of the heavy quark pair and
colorless particle, and we perform the resummation calculation with the
next-to-next-to-leading logarithms accuracy. Our results show that the
resummation effects reduce the dependence of the cross section on the scales
significantly and increase the total cross section by compared with
NLO QCD results.Comment: 23 pages, 7 figures and 2 tables; final version in PR
PID control system analysis and design
With its three-term functionality offering treatment of both transient and steady-state responses,
proportional-integral-derivative (PID) control provides a generic and efficient solution to realworld
control problems. The wide application of PID control has stimulated and sustained
research and development to "get the best out of PID", and "the search is on to find
the next key technology or methodology for PID tuning".
This article presents remedies for problems involving the integral and derivative terms. PID design objectives,
methods, and future directions are discussed. Subsequently, a computerized, simulation-based approach
is presented, together with illustrative design results for first-order, higher order, and nonlinear plants. Finally,
we discuss differences between academic research and industrial practice, so as to motivate new research
directions in PID control
PID control system analysis, design, and technology
Designing and tuning a proportional-integral-derivative
(PID) controller appears to be conceptually intuitive, but can
be hard in practice, if multiple (and often conflicting) objectives
such as short transient and high stability are to be achieved.
Usually, initial designs obtained by all means need to be adjusted
repeatedly through computer simulations until the closed-loop
system performs or compromises as desired. This stimulates
the development of "intelligent" tools that can assist engineers
to achieve the best overall PID control for the entire operating
envelope. This development has further led to the incorporation
of some advanced tuning algorithms into PID hardware modules.
Corresponding to these developments, this paper presents a
modern overview of functionalities and tuning methods in patents,
software packages and commercial hardware modules. It is seen
that many PID variants have been developed in order to improve
transient performance, but standardising and modularising PID
control are desired, although challenging. The inclusion of system
identification and "intelligent" techniques in software based PID
systems helps automate the entire design and tuning process to
a useful degree. This should also assist future development of
"plug-and-play" PID controllers that are widely applicable and
can be set up easily and operate optimally for enhanced productivity,
improved quality and reduced maintenance requirements
Hybrid Analog-Digital Precoding for Interference Exploitation
We study the multi-user massive multiple-input-single-output (MISO) and focus
on the downlink systems where the base station (BS) employs hybrid
analog-digital precoding with low-cost 1-bit digital-to-analog converters
(DACs). In this paper, we propose a hybrid downlink transmission scheme where
the analog precoder is formed based on the SVD decomposition. In the digital
domain, instead of designing a linear transmit precoding matrix, we directly
design the transmit signals by exploiting the concept of constructive
interference. The optimization problem is then formulated based on the geometry
of the modulation constellations and is shown to be non-convex. We relax the
above optimization and show that the relaxed optimization can be transformed
into a linear programming that can be efficiently solved. Numerical results
validate the superiority of the proposed scheme for the hybrid massive MIMO
downlink systems.Comment: 5 pages, EUSIPCO 201
- …
