245,661 research outputs found
Secure secret sharing in the cloud
In this paper, we show how a dealer with limited resources is possible to share the secrets to players via an untrusted cloud server without compromising the privacy of the secrets. This scheme permits a batch of two secret messages to be shared to two players in such a way that the secrets are reconstructable if and only if two of them collaborate. An individual share reveals absolutely no information about the secrets to the player. The secret messages are obfuscated by encryption and thus give no information to the cloud server. Furthermore, the scheme is compatible with the Paillier cryptosystem and other cryptosystems of the same type. In light of the recent developments in privacy-preserving watermarking technology, we further model the proposed scheme as a variant of reversible watermarking in the encrypted domain
Reversible data hiding in JPEG images based on adjustable padding
In this paper, we propose a reversible data hiding scheme that enables an adjustable amount of information to be embedded in JPEG images based on padding strategy. The proposed embedding algorithm only modifies, in a subtle manner, an adjustable number of zero-valued quantised DCT coefficients to embed the message. Hence, compared with a state-of-the-art based on histogram shifting, the proposed scheme has a relatively low distortion to the host images. In addition to this, we found that by representing the message in ternary instead of in binary, we can embed a greater amount of information while the level of distortion remains unchanged. Experimental results support that the proposed scheme can achieve better visual quality of the marked JPEG image than the histogram shifting based scheme. The proposed scheme also outperforms this state-of-the-art in terms of the ease of implementation
Color-decoupled photo response non-uniformity for digital image forensics
The last few years have seen the use of photo response non-uniformity noise (PRNU), a unique fingerprint of imaging sensors, in various digital forensic applications such as source device identification, content integrity verification and authentication. However, the use of a colour filter array for capturing only one of the three colour components per pixel introduces colour interpolation noise, while the existing methods for extracting PRNU provide no effective means for addressing this issue. Because the artificial colours obtained through the colour interpolation process is not directly acquired from the scene by physical hardware, we expect that the PRNU extracted from the physical components, which are free from interpolation noise, should be more reliable than that from the artificial channels, which carry interpolation noise. Based on this assumption we propose a Couple-Decoupled PRNU (CD-PRNU) extraction method, which first decomposes each colour channel into 4 sub-images and then extracts the PRNU noise from each sub-image. The PRNU noise patterns of the sub-images are then assembled to get the CD-PRNU. This new method can prevent the interpolation noise from propagating into the physical components, thus improving the accuracy of device identification and image content integrity verification
Quantum phase transition in a three-level atom-molecule system
We adopt a three-level bosonic model to investigate the quantum phase
transition in an ultracold atom-molecule conversion system which includes one
atomic mode and two molecular modes. Through thoroughly exploring the
properties of energy level structure, fidelity, and adiabatical geometric
phase, we confirm that the system exists a second-order phase transition from
an atommolecule mixture phase to a pure molecule phase. We give the explicit
expression of the critical point and obtain two scaling laws to characterize
this transition. In particular we find that both the critical exponents and the
behaviors of ground-state geometric phase change obviously in contrast to a
similar two-level model. Our analytical calculations show that the ground-state
geometric phase jumps from zero to ?pi/3 at the critical point. This
discontinuous behavior has been checked by numerical simulations and it can be
used to identify the phase transition in the system.Comment: 8 pages,8 figure
- …
