2,401 research outputs found

    Effects of momentum-dependent nuclear potential on two-nucleon correlation functions and light cluster production in intermediate energy heavy-ion collisions

    Get PDF
    Using an isospin- and momentum-dependent transport model, we study the effects due to the momentum dependence of isoscalar nuclear potential as well as that of symmetry potential on two-nucleon correlation functions and light cluster production in intermediate energy heavy-ion collisions induced by neutron-rich nuclei. It is found that both observables are affected significantly by the momentum dependence of nuclear potential, leading to a reduction of their sensitivity to the stiffness of nuclear symmetry energy. However, the t/3^{3}He ratio remains a sensitive probe of the density dependence of nuclear symmetry energy.Comment: 20 pages, 11 figure

    Transition density and pressure in hot neutron stars

    Get PDF
    Using the momentum-dependent MDI effective interaction for nucleons, we have studied the transition density and pressure at the boundary between the inner crust and liquid core of hot neutron stars. We find that their values are larger in neutrino-trapped neutron stars than in neutrino-free neutron stars. Furthermore, both are found to decrease with increasing temperature of a neutron star as well as increasing slope parameter of the nuclear symmetry energy, except that the transition pressure in neutrino-trapped neutron stars for the case of small symmetry energy slope parameter first increases and then decreases with increasing temperature. We have also studied the effect of the nuclear symmetry energy on the critical temperature above which the inner crust in a hot neutron star disappears and found that with increasing value of the symmetry energy slope parameter, the critical temperature decreases slightly in neutrino-trapped neutron stars but first decreases and then increases in neutrino-free neutron stars.Comment: 7 pages, 6 figures, version to appear in Phys. Rev.

    Density slope of the nuclear symmetry energy from the neutron skin thickness of heavy nuclei

    Get PDF
    Expressing explicitly the parameters of the standard Skyrme interaction in terms of the macroscopic properties of asymmetric nuclear matter, we show in the Skyrme-Hartree-Fock approach that unambiguous correlations exist between observables of finite nuclei and nuclear matter properties. We find that existing data on neutron skin thickness Δrnp\Delta r_{np} of Sn isotopes give an important constraint on the symmetry energy Esym(ρ0)E_{sym}({\rho _{0}}) and its density slope LL at saturation density ρ0{\rho _{0}}. Combining these constraints with those from recent analyses of isospin diffusion and double neutron/proton ratio in heavy-ion collisions at intermediate energies leads to a more stringent limit on LL approximately independent of Esym(ρ0)E_{sym}({\rho _{0}}). The implication of these new constraints on the Δrnp\Delta r_{np} of 208^{208}Pb as well as the core-crust transition density and pressure in neutron stars is discussed.Comment: 18 pages, 9 figures, 1 table. Significantly expanded to include a number of details and discussions. Title shortened. Accepted version to appear in PR

    Probing the equation of state of neutron-rich matter with intermediate energy heavy-ion collisions

    Full text link
    Nuclear reactions induced by stable and/or radioactive neutron-rich nuclei provide the opportunity to pin down the equation of state of neutron-rich matter, especially the density (ρ\rho) dependence of its isospin-dependent part, i.e., the nuclear symmetry energy EsymE_{\rm sym}. A conservative constraint, 32(ρ/ρ0)0.7<Esym(ρ)<32(ρ/ρ0)1.132(\rho /\rho_{0})^{0.7} < E_{\rm sym}(\rho ) < 32(\rho /\rho _{0})^{1.1}, around the nuclear matter saturation density ρ0\rho_0 has recently been obtained from the isospin diffusion data in intermediate energy heavy-ion collisions. We review this exciting result and discuss its consequences and implications on nuclear effective interactions, radii and cooling mechanisms of neutron stars.Comment: 10 pages. Invited talks at (1) International Workshop on Nuclear Multifragmentation, Nov. 28-Dec. 1, 2005, Catania, Italy and (2) XXIX Symposium on Nuclear Physics, Jan. 3-6, 2006, Cocoyoc, Morelos, Mexic

    High-energy behavior of the nuclear symmetry potential in asymmetric nuclear matter

    Full text link
    Using the relativistic impulse approximation with empirical NN scattering amplitude and the nuclear scalar and vector densities from the relativistic mean-field theory, we evaluate the Dirac optical potential for neutrons and protons in asymmetric nuclear matter. From the resulting Schr\"{o}% dinger-equivalent potential, the high energy behavior of the nuclear symmetry potential is studied. We find that the symmetry potential at fixed baryon density is essentially constant once the nucleon kinetic energy is greater than about 500 MeV. Moreover, for such high energy nucleon, the symmetry potential is slightly negative below a baryon density of about % \rho =0.22 fm3^{-3} and then increases almost linearly to positive values at high densities. Our results thus provide an important constraint on the energy and density dependence of nuclear symmetry potential in asymmetric nuclear matter.Comment: 6 pages, 5 figures, revised version, to appear in PR

    Exchange coupling between two ferromagnetic electrodes separated by a graphene nanoribbon

    Full text link
    In this study, based on the self-energy method and the total energy calculation, the indirect exchange coupling between two semi-infinite ferromagnetic strips (FM electrodes) separated by metallic graphene nanoribbons (GNRs) is investigated. In order to form a FM/GNR/FM junction, a graphitic region of finite length is coupled to the FM electrodes along graphitic zigzag or armchair interfaces of width NN. The numerical results show that, the exchange coupling strength which can be obtained from the difference between the total energies of electrons in the ferromagnetic and antiferromagnetic couplings, has an oscillatory behavior, and depends on the Fermi energy and the length of the central region.Comment: 4 pages, 6 figures, International Conference on Theoretical Physics 'Dubna-Nano2008

    Energy dependence of pion in-medium effects on \pi^-/\pi^+ ratio in heavy-ion collisions

    Get PDF
    Within the framework of a thermal model with its parameters fitted to the results from an isospin-dependent Boltzmann-Uehling-Uhlenbeck (IBUU) transport model, we study the pion in-medium effect on the charged-pion ratio in heavy-ion collisions at various energies. We find that due to the cancellation between the effects from pion-nucleon s-wave and p-wave interactions in nuclear medium, the \pi^-/\pi^+ ratio generally decreases after including the pion in-medium effect. The effect is larger at lower collision energies as a result of narrower pion spectral functions at lower temperatures.Comment: 4 pages, 4 figures, 1 table, minor modifications, version to appear in Physical Review

    Nuclear matter symmetry energy and the neutron skin thickness of heavy nuclei

    Full text link
    Correlations between the thickness of the neutron skin in finite nuclei and the nuclear matter symmetry energy are studied in the Skyrme Hartree-Fock model. From the most recent analysis of the isospin diffusion data in heavy-ion collisions based on an isospin- and momentum-dependent transport model with in-medium nucleon-nucleon cross sections, a value of L=88±25L=88\pm 25 MeV for the slope of the nuclear symmetry energy at saturation density is extracted, and this imposes stringent constraints on both the parameters in the Skyrme effective interactions and the neutron skin thickness of heavy nuclei. Predicted thickness of the neutron skin is 0.22±0.040.22\pm 0.04 fm for % ^{208}Pb, 0.29±0.040.29\pm 0.04 fm for 132^{132}Sn, and 0.22±0.040.22\pm 0.04 fm for % ^{124}Sn.Comment: 6 pages, 4 figures, 1 table, revised version, to appear in PR

    Contributions of hyperon-hyperon scattering to subthreshold cascade production in heavy ion collisions

    Get PDF
    Using a gauged flavor SU(3)-invariant hadronic Lagrangian, we calculate the cross sections for the strangeness-exchange reactions YY to N\Xi (Y=\Lambda, \Sigma) in the Born approximation. These cross sections are then used in the Relativistic Vlasov-Uehling-Uhlenbeck (RVUU) transport model to study \Xi production in Ar+KCl collisions at incident energy of 1.76A GeV and impact parameter b=3.5 fm. We find that including the contributions of hyperon-hyperon scattering channels strongly enhances the yield of \Xi, leading to the abundance ratio \Xi^{-}/(\Lambda+\Sigma^{0})=3.38E-3, which is essentially consistent with the recently measured value of (5.6±1.21.7+1.8)×103(5.6 \pm 1.2_{-1.7}^{+1.8})\times 10^{-3} by the HADES collaboration at GSI.Comment: 8 pages, 5 figure

    Isospin- and momentum-dependent effective interactions for the baryon octet and the properties of hybrid stars

    Get PDF
    The isospin- and momentum-dependent MDI interaction, which has been extensively used in intermediate-energy heavy-ion reactions to study the properties of asymmetric nuclear matter, is extended to include the nucleon-hyperon and hyperon-hyperon interactions by assuming same density, momentum and isospin dependence as for the nucleon-nucleon interaction. The parameters in these interactions are determined from the empirical hyperon single-particle potentials in symmetric nuclear matter at saturation density. The extended MDI interaction is then used to study in the mean-field approximation the equation of state of hypernuclear matter and also the properties of hybrid stars by including the phase transition from the hypernuclear matter to the quark matter at high densities. In particular, the effects of attractive and repulsive Σ\SigmaN interactions and different values of symmetry energies on the hybrid star properties are investigated.Comment: 13 pages, 12 figures, version to appear in Phys. Rev.
    corecore