30,657 research outputs found

    On the Migration of the Galilean Satellites

    Get PDF
    Topic 67: Solar System: GeneralPoster PresentationThe migration of the Galilean satellites during formation due to interactions with the circumjovian disk is studied. In the gas-starved disk model proposed by Canup & Ward (2002, 2006), the Galilean satellites are the last generation of satellites formed in the circumjovian disk, and their migration and accretion depend on disk viscosity, opacity and material inflow rate. Relaxing the migration to non-isothermal type I regime (e.g. Paardekooper et al. 2010) allows the satellites to migrate outwards in optically-thick disk regions, and there is a position where the disk torque is zero. This contrasts with 278the results in the isothermal type I regime in which the satellites always migrate inwards. Including the effect of temperature dependence of disk opacity can produce multiple zero-torque positions in the circumjovian disk. As the disk depletes, these zero-torque positions shift towards Jupiter. Under this setting, a satellite at a range of initial locations will eventually converge to near one of these zero-torque positions, but stays at a fixed distance away (with the distance depending on satellite mass), so that it is moving inwards with the zero-torque position. However, if the satellite starts at a large-enough distance from Jupiter, it may move in a trajectory that does not converge to any of these zero-torque positions and survives to the end. The effect of satellite growth and variation of disk parameters on satellite migration will be discussed. The migration in multiple satellite system, and how these settings can possibly result in the Laplace resonance among the Galilean satellites, will be also investigated. This work is supported in part by Hong Kong RGC grant HKU 7030/11Ppublished_or_final_versio

    To translate, or not to translate: viral and host mRNA regulation by interferon-stimulated genes.

    Get PDF
    Type I interferon (IFN) is one of the first lines of cellular defense against viral pathogens. As a result of IFN signaling, a wide array of IFN-stimulated gene (ISG) products is upregulated to target different stages of the viral life cycle. We review recent findings implicating a subset of ISGs in translational regulation of viral and host mRNAs. Translation inhibition is mediated either by binding to viral RNA or by disrupting physiological interactions or levels of the translation complex components. In addition, many of these ISGs localize to translationally silent cytoplasmic granules, such as stress granules and processing bodies, and intersect with the microRNA (miRNA)-mediated silencing pathway to regulate translation of cellular mRNAs

    ZAP's stress granule localization is correlated with its antiviral activity and induced by virus replication.

    Get PDF
    Cellular antiviral programs encode molecules capable of targeting multiple steps in the virus lifecycle. Zinc-finger antiviral protein (ZAP) is a central and general regulator of antiviral activity that targets pathogen mRNA stability and translation. ZAP is diffusely cytoplasmic, but upon infection ZAP is targeted to particular cytoplasmic structures, termed stress granules (SGs). However, it remains unclear if ZAP's antiviral activity correlates with SG localization, and what molecular cues are required to induce this localization event. Here, we use Sindbis virus (SINV) as a model infection and find that ZAP's localization to SGs can be transient. Sometimes no apparent viral infection follows ZAP SG localization but ZAP SG localization always precedes accumulation of SINV non-structural protein, suggesting virus replication processes trigger SG formation and ZAP recruitment. Data from single-molecule RNA FISH corroborates this finding as the majority of cells with ZAP localization in SGs contain low levels of viral RNA. Furthermore, ZAP recruitment to SGs occurred in ZAP-expressing cells when co-cultured with cells replicating full-length SINV, but not when co-cultured with cells replicating a SINV replicon. ZAP recruitment to SGs is functionally important as a panel of alanine ZAP mutants indicate that the anti-SINV activity is correlated with ZAP's ability to localize to SGs. As ZAP is a central component of the cellular antiviral programs, these data provide further evidence that SGs are an important cytoplasmic antiviral hub. These findings provide insight into how antiviral components are regulated upon virus infection to inhibit virus spread

    3-D measurement of body tissues based on ultrasound images with 3-D spatial information

    Get PDF
    2005-2006 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Fast Locality-Sensitive Hashing Frameworks for Approximate Near Neighbor Search

    Full text link
    The Indyk-Motwani Locality-Sensitive Hashing (LSH) framework (STOC 1998) is a general technique for constructing a data structure to answer approximate near neighbor queries by using a distribution H\mathcal{H} over locality-sensitive hash functions that partition space. For a collection of nn points, after preprocessing, the query time is dominated by O(nρlogn)O(n^{\rho} \log n) evaluations of hash functions from H\mathcal{H} and O(nρ)O(n^{\rho}) hash table lookups and distance computations where ρ(0,1)\rho \in (0,1) is determined by the locality-sensitivity properties of H\mathcal{H}. It follows from a recent result by Dahlgaard et al. (FOCS 2017) that the number of locality-sensitive hash functions can be reduced to O(log2n)O(\log^2 n), leaving the query time to be dominated by O(nρ)O(n^{\rho}) distance computations and O(nρlogn)O(n^{\rho} \log n) additional word-RAM operations. We state this result as a general framework and provide a simpler analysis showing that the number of lookups and distance computations closely match the Indyk-Motwani framework, making it a viable replacement in practice. Using ideas from another locality-sensitive hashing framework by Andoni and Indyk (SODA 2006) we are able to reduce the number of additional word-RAM operations to O(nρ)O(n^\rho).Comment: 15 pages, 3 figure

    End-to-End Localization and Ranking for Relative Attributes

    Full text link
    We propose an end-to-end deep convolutional network to simultaneously localize and rank relative visual attributes, given only weakly-supervised pairwise image comparisons. Unlike previous methods, our network jointly learns the attribute's features, localization, and ranker. The localization module of our network discovers the most informative image region for the attribute, which is then used by the ranking module to learn a ranking model of the attribute. Our end-to-end framework also significantly speeds up processing and is much faster than previous methods. We show state-of-the-art ranking results on various relative attribute datasets, and our qualitative localization results clearly demonstrate our network's ability to learn meaningful image patches.Comment: Appears in European Conference on Computer Vision (ECCV), 201

    Reactive interface formation and Co-induced (√7×√7 ) superstructure on a GaN(0001) pseudo- (1×1 ) substrate surface

    Get PDF
    Deposition of Co on GaN(0001) pseudo- (1×1) surface at room temperature by molecular-beam epitaxy is studied by low-energy electron diffraction, scanning-tunneling microscopy and first-principles total energy calculations. Reactive interface formation where the deposited Co reacts with Ga on GaN substrate forming CoGax (x∼2) compound or alloy can be inferred from surface morphology evolution and mass consideration. At an intermediate coverage about 0.4 monolayers, a specific (√7×√7) surface structural phase develops, as observed by both low-energy electron diffraction and scanning tunneling microscopy studies. First-principles total energy calculations suggest that the (√7×√7) structure is induced by Co-trimers located slightly below the topmost Ga adlayer of the substrate. © 2010 The American Physical Society.published_or_final_versio
    corecore