10,072 research outputs found
Inkjet printed multimetal microelectrodes on PDMS for functionalized microfluidic systems
A novel direct method of metal microelectrode patterning on polydimethylsiloxane (PDMS) using inkjet printed gold and silver nanoparticles to form electrochemical sensors is presented. Inkjet printing is an additive microfabrication technique enabling microelectrode patterning directly over large areas at low-temperatures. (3-mercaptopropyl) trimethoxysilane (MPTMS) to promote PDMS surface wettability and improve metal adhesion and a pixel-printing subsampling method to overcome surface tension driven ink-droplet coalescence, are then employed to form a robust fabrication process. The resulting printed gold and silver microelectrodes exhibit good compactness, continuity and conductivity, and are used to manufacture functionalized microfluidic systems with in-situ three-electrode electrochemical sensors.published_or_final_versio
Recommended from our members
Probing the switching mechanism in ZnO nanoparticle memristors
We investigate the resistance switching mechanism in memristors based on colloidal ZnO nanoparticles using electroabsorption (EA) spectroscopy. In this EA experiment, we incorporate a small amount of low-bandgap polymer, poly(9,9-dioctylfluorene-cobenzothiadiazole) (F8BT), as a probe molecule in ZnO-nanoparticle memristors. By characterizing this polymer, we can study the change of built-in potential (VBI) in the device during the resistance switching process without disturbing the resistance state by the EA probe light. Our results show that VBI increases when the device is switched to the high resistance state, suggesting a shift of effective workfunction of the electrode. Thus, we attribute the resistance switching to the field-dependent migration of oxygen vacancies associated with the adsorption and desorption of oxygen molecules at the Al/ZnO interface. This process results in the modulation of the interfacial injection barrier which governs the resistance state of the device.This work was supported by the Engineering and Physical Sciences Research Council [Grant Number EP/G060738/1]Copyright 2014 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article "Probing the switching mechanism in ZnO nanoparticle memristors" has been accepted by Journal of Applied Physics. After it is published, it will be found at http://scitation.aip.org/content/aip/journal/ja
Mobile access to moodle activities: student usage and perceptions
Parallel Sessions 4Theme: Mobile Learning MOOCs and 21st Century-learningWith the rapidly increasing use of handheld mobile devices among staff and students in higher education, it has become more and more common for them to access teaching and learning related information and services using mobile devices (Peters, 2009). A 2011 survey on mobile services in academic libraries in Hong Kong and Singapore reveals that the possession rate of mobile devices was 93.4% among Hong Kong college students, and 61.9% of them used smartphones to access the Internet (Ang, 2012). It is not uncommon to see university students use smartphones to access learning resources on Moodle and other LMSs. However, how students use Moodle via mobile phones and what their perceptions of mobile access to Moodle have rarely been formally investigated. The current research aims at filling this gap by looking at which Moodle activities students would use mobile phones to access and exploring possible reasons behind the usage patterns.postprin
An interstitial fluid transdermal extraction system for continuous glucose monitoring
A novel microfluidic system which is fabricated with five polydimethylsiloxane layers for interstitial fluid (ISF) extraction, collection, and measurement toward the application of continuous and real-time glucose monitoring is presented in this paper. The system consists of a micro vacuum generator for ISF transdermal extraction and fluid manipulation, micro chambers for the collection of ISF, micro pneumatic valves for fluid management, and a micro flow sensor for ISF volume measurement. Sequentially controlled by the pneumatic valves, the ISF extraction, collection, and volumetric measurement functions of the system were demonstrated using the stable vacuum generated by the integrated vacuum generator. Through low-frequency ultrasound pretreated full-thickness pig skin, the normal saline solution with different glucose concentrations was transdermally extracted, collected, and measured. The absolute error in the volume measurement of the transdermally extracted ISF analog was less than 0.05 μ L. The microfluidic system makes it possible to realize the clinical application of continuous glucose monitoring based on ISF transdermal extraction technology. © 2012 IEEE.published_or_final_versio
Role of the Bloom's syndrome helicase in maintenance of genome stability.
The RecQ family of DNA helicases has members in all organisms analysed. In humans, defects in three family members are associated with disease conditions: BLM is defective in Bloom's syndrome, WRN in Werner's syndrome and RTS in Rothmund-Thomson syndrome. In each case, cells from affected individuals show inherent genomic instability. The focus of our work is the Bloom's syndrome gene and its product, BLM. Here, we review the latest information concerning the roles of BLM in the maintenance of genome integrity
Cartan subalgebras and the UCT problem, II
We show that outer approximately represenbtable actions of a finite cyclic
group on UCT Kirchberg algebras satisfy a certain quasi-freeness type property
if the corresponding crossed products satisfy the UCT and absorb a suitable UHF
algebra tensorially. More concretely, we prove that for such an action there
exists an inverse semigroup of homogeneous partial isometries that generates
the ambient C*-algebra and whose idempotent semilattice generates a Cartan
subalgebra. We prove a similar result for actions of finite cyclic groups with
the Rokhlin property on UCT Kirchberg algebras absorbing a suitable UHF
algebra. These results rely on a new construction of Cartan subalgebras in
certain inductive limits of Cartan pairs. We also provide a characterisation of
the UCT problem in terms of finite order automorphisms, Cartan subalgebras and
inverse semigroups of partial isometries of the Cuntz algebra .
This generalizes earlier work of the authors.Comment: minor revisions; final version, accepted for publication in Math.
Ann.; 26 page
Optimal self-assembly of finite shapes at temperature 1 in 3D
Working in a three-dimensional variant of Winfree's abstract Tile Assembly
Model, we show that, for an arbitrary finite, connected shape , there is a tile set that uniquely self-assembles into a 3D
representation of a scaled-up version of at temperature 1 in 3D with
optimal program-size complexity (the "program-size complexity", also known as
"tile complexity", of a shape is the minimum number of tile types required to
uniquely self-assemble it). Moreover, our construction is "just barely" 3D in
the sense that it only places tiles in the and planes. Our
result is essentially a just-barely 3D temperature 1 simulation of a similar 2D
temperature 2 result by Soloveichik and Winfree (SICOMP 2007)
Proteome quantification of cotton xylem sap suggests the mechanisms of potassium-deficiency-induced changes in plant resistance to environmental stresses
Proteomics was employed to investigate the molecular mechanisms of apoplastic response to potassium(K)-deficiency in cotton. Low K (LK) treatment significantly decreased the K and protein contents of xylem sap. Totally, 258 peptides were qualitatively identified in the xylem sap of cotton seedlings, of which, 90.31% were secreted proteins. Compared to the normal K (NK), LK significantly decreased the expression of most environmental-stress-related proteins and resulted in a lack of protein isoforms in the characterized proteins. For example, the contents of 21 Class Ш peroxidase isoforms under the LK were 6 to 44% of those under the NK and 11 its isoforms were lacking under the LK treatment; the contents of 3 chitinase isoforms under LK were 11–27% of those under the NK and 2 its isoforms were absent under LK. In addition, stress signaling and recognizing proteins were significantly down-regulated or disappeared under the LK. In contrast, the LK resulted in at least 2-fold increases of only one peroxidase, one protease inhibitor, one non-specific lipid-transfer protein and histone H4 and in the appearance of H2A. Therefore, K deficiency decreased plant tolerance to environmental stresses, probably due to the significant and pronounced decrease or disappearance of a myriad of stress-related proteins
A critical evaluation of automatic atom mapping algorithms and tools
The identification of the atoms which change their position in chemical reactions is an important knowledge within the field of Metabolic Engineering. This can lead to new advances at different levels from the reconstruction of metabolic networks to the classification of chemical reactions, through the identification of the atomic changes inside a reaction. The Atom Mapping approach was initially developed in the 1960s, but recently suffered important advances, being used in diverse biological and biotechnological studies. The main methodologies used for atom mapping are the Maximum Common Substructure and the Linear Optimization methods, which both require computational know-how and powerful resources to run the underlying tools.
In this work, we assessed a number of previously implemented atom mapping frameworks, and built a framework able of managing the different data inputs and outputs, as well as the mapping process provided by each of these third-party tools. We evaluated the admissibility of the calculated atom maps from different algorithms, also assessing if with different approaches we were capable of returning equivalent atom maps for the same chemical reaction.ERDF -European Regional Development Fund(UID/BIO/04469/2013)info:eu-repo/semantics/publishedVersio
Giant Nonlinear Optical Activity from Planar Metasurfaces
Second harmonic generation circular dichroism (CD) is more sensitive to the handedness of
chiral materials than its linear optical counterpart. In this work, we show that 3D chiral structures are not
necessary for introducing strong CD for harmonic generations. Specifically, we demonstrate giant CD for
both second harmonic generation and third harmonic generation on suitably designed ultrathin plasmonic
metasurfaces. It is experimentally and theoretically verified that the overwhelming contribution to this
nonlinear CD is of achiral origin. The results shed new light on the origin of the nonlinear CD effect in
achiral planar surfaces
- …
