19,651 research outputs found
Distilling multipartite pure states from a finite number of copies of multipartite mixed states
This paper will address the question of the distillation of entanglement from
a finite number of multi-partite mixed states. It is shown that if one can
distill a pure entangled state from n copies of a mixed state there must be at least a subspace in whole Hilbert space of the all
copies such that the projection of onto the
subspace is a pure entangled state. We also show that the purification of
entanglement or distillation of entanglement can be carried out by local joint
projective measurements with the help of classical communication and local
general positive operator valued measurements on a single particle, in
principle. Finally we discuss experimental realizability of the entanglement
purification.Comment: to appear in PR
Distinguishing locally of quantum states and the distillation of entanglement
This paper try to probe the relation of distinguishing locally and
distillation of entanglement. The distinguishing information (DI) and the
maximal distinguishing information (MDI) of a set of pure states are defined.
The interpretation of distillation of entanglement in term of information is
given. The relation between the maximal distinguishing information and
distillable entanglement is gained. As a application of this relation the
distillable entanglement of Bell-diagonal states is present.Comment: 5 page
Local distinguishability of quantum states and the distillation of entanglement
This paper tries to probe the relation between the local distinguishability
of orthogonal quantum states and the distillation of entanglement. An new
interpretation for the distillation of entanglement and the distinguishability
of orthogonal quantum states in terms of information is given, respectively. By
constraining our discussion on a special protocol we give a necessary and
sufficient condition for the local distinguishability of the orthogonal pure
states, and gain the maximal yield of the distillable entanglement. It is shown
that the information entropy, the locally distinguishability of quantum states
and the distillation of entanglement are closely related.Comment: 4 page, the revision of quant-ph/0202165, submitte
Criterion for distinguishability of arbitrary bipartite orthogonal states
In this paper we present a necessary and sufficient condition of
distinguishability of bipartite quantum states. It is shown that the operators
to reliably distinguish states need only rounds of projective measurements and
classical comunication. We also present a necessary condition of
distinguishability of bipartite quantum states which is simple and general.
With this condition one can get many cases of indistinguishability. The
conclusions may be useful in understanding the essence of nonlocality and
calculating the distillable entanglement and the bound of distillable
entanglement.Comment: 7 page
Magnetization of Two Dimensional Heavy Holes with Boundaries in a Perpendicular Magnetic Field
The magnetization of heavy holes in III-V semiconductor quantum wells with
Rashba spin-orbit coupling (SOC) in an external perpendicular magnetic field is
theoretically studied. We concentrate on the effects on the magnetization
induced by the system boundary, the Rashba SOC and the temperature. It is found
that the sawtooth-like de Haas--van Alphen (dHvA) oscillations of the
magnetization will change dramatically in the presence of such three factors.
Especially, the effects of the edge states and Rashba SOC on the magnetization
are more evident when the magnetic field is more small. The oscillation center
will shift when the boundary effect is considered and the Rashba SOC will bring
beating patterns to the dHvA oscillations. These effects on the dHvA
oscillations are preferred to be observed at low temperature. With increasing
the temperature, the dHvA oscillations turn to be blurred and eventually
disappear.Comment: 6 pages, 6 figure
Phenomenological study of the isovector tensor meson family
In this work, we study all the observed states and group them into the
meson family, where their total and partial decay widths are calculated
via the quark pair creation model. Taking into account the present experimental
data, we further give the corresponding phenomenological analysis, which is
valuable to test whether each state can be assigned into the meson
family. What is more important is that the prediction of their decay behaviors
will be helpful for future experimental study of the states.Comment: 11 pages, 8 figures and 8 tables. More discussions added. Accepted by
Phys. Rev.
The evolution of universe in the two-scalar theory
We generalize f(R,T) gravity into the two-scalar theory that includes two
independent scalar fields by the variational method, and we derive its field
equations in Einstein frame using conformal transformation. Based on Friedmann
equations and Raychaudhuri equation, with a consideration of the cosmic content
as its perfect-fluid form, a further discussion leads us to an accelerated
expanding condition of universe. In the two-scalar theory, universe has two
states which are the accelerated expansion and decelerated contraction, and it
has three stages during its evolution. The first and third stages are in the
accelerated expanding state, and the second stage is in the decelerated
contracting state. The third stage represents the present universe and it tends
to become a dust universe.Comment: 19 pages,1 figur
Interactions among different types of nonlinear waves described by the Kadomtsev-Petviashvili Equation
In nonlinear physics, the interactions among solitons are well studied thanks
to the multiple soliton solutions can be obtained by various effective methods.
However, it is very difficult to study interactions among different types of
nonlinear waves such as the solitons (or solitary waves), the cnoidal periodic
waves and Painlev\'e waves. In this paper, the nonlocal symmetries related to
the Darboux transformations (DT) of the Kadomtsev-Petviashvili (KP) equation is
localized after imbedding the original system to an enlarged one. Then the DT
is used to find the corresponding group invariant solutions such that
interaction solutions among different types of nonlinear waves can be found. It
is shown that starting from a Boussinesq wave or a KdV-type wave, which are two
basic reductions of the KP equation, the essential and unique role of the DT is
to add an additional soliton
LSANet: Feature Learning on Point Sets by Local Spatial Aware Layer
Directly learning features from the point cloud has become an active research
direction in 3D understanding. Existing learning-based methods usually
construct local regions from the point cloud and extract the corresponding
features. However, most of these processes do not adequately take the spatial
distribution of the point cloud into account, limiting the ability to perceive
fine-grained patterns. We design a novel Local Spatial Aware (LSA) layer, which
can learn to generate Spatial Distribution Weights (SDWs) hierarchically based
on the spatial relationship in local region for spatial independent operations,
to establish the relationship between these operations and spatial
distribution, thus capturing the local geometric structure sensitively.We
further propose the LSANet, which is based on LSA layer, aggregating the
spatial information with associated features in each layer of the network
better in network design.The experiments show that our LSANet can achieve on
par or better performance than the state-of-the-art methods when evaluating on
the challenging benchmark datasets. For example, our LSANet can achieve 93.2%
accuracy on ModelNet40 dataset using only 1024 points, significantly higher
than other methods under the same conditions. The source code is available at
https://github.com/LinZhuoChen/LSANet
Tunneling Field-Effect Junctions with WS barrier
Transition metal dichalcogenides (TMDCs), with their two-dimensional
structures and sizable bandgaps, are good candidates for barrier materials in
tunneling field-effect transistor (TFET) formed from atomic precision vertical
stacks of graphene and insulating crystals of a few atomic layers in thickness.
We report first-principles study of the electronic properties of the
Graphene/WS/Graphene sandwich structure revealing strong interface effects
on dielectric properties and predicting a high ON/OFF ratio with an appropriate
WS thickness and a suitable range of the gate voltage. Both the band
spin-orbit coupling splitting and the dielectric constant of the WS layer
depend on its thickness when in contact with the graphene electrodes,
indicating strong influence from graphene across the interfaces. The dielectric
constant is significantly reduced from the bulk WS value. The effective
barrier height varies with WS thickness and can be tuned by a gate voltage.
These results are critical for future nanoelectronic device designs.Comment: 18 pages, 5 figure
- …
