8,115 research outputs found
Determining layer number of two dimensional flakes of transition-metal dichalcogenides by the Raman intensity from substrate
Transition-metal dichalcogenide (TMD) semiconductors have been widely studied
due to their distinctive electronic and optical properties. The property of TMD
flakes is a function of its thickness, or layer number (N). How to determine N
of ultrathin TMDs materials is of primary importance for fundamental study and
practical applications. Raman mode intensity from substrates has been used to
identify N of intrinsic and defective multilayer graphenes up to N=100.
However, such analysis is not applicable for ultrathin TMD flakes due to the
lack of a unified complex refractive index () from monolayer to bulk
TMDs. Here, we discuss the N identification of TMD flakes on the SiO/Si
substrate by the intensity ratio between the Si peak from 100-nm (or 89-nm)
SiO/Si substrates underneath TMD flakes and that from bare SiO/Si
substrates. We assume the real part of of TMD flakes as that of
monolayer TMD and treat the imaginary part of as a fitting
parameter to fit the experimental intensity ratio. An empirical ,
namely, , of ultrathin MoS, WS and WSe
flakes from monolayer to multilayer is obtained for typical laser excitations
(2.54 eV, 2.34 eV, or 2.09 eV). The fitted of MoS has
been used to identify N of MoS flakes deposited on 302-nm SiO/Si
substrate, which agrees well with that determined from their shear and
layer-breathing modes. This technique by measuring Raman intensity from the
substrate can be extended to identify N of ultrathin 2D flakes with N-dependent
. For the application purpose, the intensity ratio excited by
specific laser excitations has been provided for MoS, WS and
WSe flakes and multilayer graphene flakes deposited on Si substrates
covered by 80-110 nm or 280-310 nm SiO layer.Comment: 10 pages, 4 figures. Accepted by Nanotechnolog
A theoretical study on the mechanism of the addition reaction between cyclopropenylidene and ethylene
The reaction mechanism between cyclopropenylidene and ethylene has been systematically investigated employing the MP2/6-311+G* level of theory to better understand the cyclopropenylidene reactivity with unsaturated hydrocarbons. Geometry optimization, vibrational analysis, and energy property for the involved stationary points on the potential energy surface have been calculated. Energies of all the species are also further refined by the CCSD(T)/6-311+G* single-point calculations. Firstly, one important reaction intermediate (INTa) has been located via a transition state (TSa). After that, the common intermediate (INTb) for the two pathways (1) and (2) has been formed via TSb. At last, two different products possessing three- and four-membered ring characters have been obtained through two reaction pathways. In the reaction pathway (1), a three-membered ring alkyne compound has been obtained. As for the reaction pathway (2), a four-membered ring conjugated diene compound has been formed, which is the most favorable reaction to occur from the kinetic and thermodynamic viewpoints
A theoretical study of the mechanism of the addition reaction between carbene and azacyclopropane
The mechanism of the addition reaction between carbene and azacyclopropane was investigated using the second-order Moller–Plesset perturbation theory (MP2). By using the 6-311+G* basis set, geometry optimization, vibrational analysis and the energy properties of the involved stationary points on the potential energy surface were calculated. From the surface energy profile, it can be predicted that there are two reaction mechanisms. The first one (1) is carbene attack at the N atom of azacyclopropane to form an intermediate, 1a (IM1a), which is a barrier-free exothermic reaction. Then, IM1a can isomerize to IM1b via a transition state 1a (TS1a), in which the potential barrier is 30.0 kJ/mol. Subsequently, IM1b isomerizes to a product (Pro1) via TS1b with a potential barrier of 39.3 kJ/mol. The other one (2) is carbene attack at the C atom of azacyclopropane, firstly to form IM2 via TS2a, the potential barrier is 35.4 kJ/mol. Then IM2 isomerizes to a product (Pro2) via TS2b with a potential barrier of 35.1 kJ/mol. Correspondingly, the reaction energy for the reactions (1) and (2) is –478.3 and –509.9 kJ/mol, respectively. Additionally, the orbital interactions are also discussed for the leading intermediate
Neural differentiation of adipose-derived stem cells by indirect co-culture with Schwann cells
To investigate whether adipose-derived stem cells (ADSCs) could be subject to neural differentiation induced only by Schwann cell (SC) factors, we co-cultured ADSCs and SCs in transwell culture dishes. Immunoassaying, Western blot analysis, and RT-PCR were performed (1, 3, 7, 14 d) and the co-cultured ADSCs showed gene and protein expression of S-100, Nestin, and GFAP. Further, qRT-PCR disclosed relative quantitative differences in the above three gene expressions. We think ADSCs can undergo induced neural differentiation by being co-cultured with SCs, and such differentiations begin 1 day after co-culture, become apparent after 7 days, and thereafter remain stable till the 14th day
Monolayer Molybdenum Disulfide Nanoribbons with High Optical Anisotropy
Two-dimensional Molybdenum Disulfide (MoS2) has shown promising prospects for
the next generation electronics and optoelectronics devices. The monolayer MoS2
can be patterned into quasi-one-dimensional anisotropic MoS2 nanoribbons
(MNRs), in which theoretical calculations have predicted novel properties.
However, little work has been carried out in the experimental exploration of
MNRs with a width of less than 20 nm where the geometrical confinement can lead
to interesting phenomenon. Here, we prepared MNRs with width between 5 nm to 15
nm by direct helium ion beam milling. High optical anisotropy of these MNRs is
revealed by the systematic study of optical contrast and Raman spectroscopy.
The Raman modes in MNRs show strong polarization dependence. Besides that the
E' and A'1 peaks are broadened by the phonon-confinement effect, the modes
corresponding to singularities of vibrational density of states are activated
by edges. The peculiar polarization behavior of Raman modes can be explained by
the anisotropy of light absorption in MNRs, which is evidenced by the polarized
optical contrast. The study opens the possibility to explore
quasione-dimensional materials with high optical anisotropy from isotropic 2D
family of transition metal dichalcogenides
Interlayer Interactions in Anisotropic Atomically-thin Rhenium Diselenide
Recently, two-dimensional (2D) materials with strong in-plane anisotropic
properties such as black phosphorus have demonstrated great potential for
developing new devices that can take advantage of its reduced lattice symmetry
with potential applications in electronics, optoelectronics and
thermoelectrics. However, the selection of 2D material with strong in-plane
anisotropy has so far been very limited and only sporadic studies have been
devoted to transition metal dichalcogenides (TMDC) materials with reduced
lattice symmetry, which is yet to convey the full picture of their optical and
phonon properties, and the anisotropy in their interlayer interactions. Here,
we study the anisotropic interlayer interactions in an important TMDC 2D
material with reduced in-plane symmetry - atomically thin rhenium diselenide
(ReSe2) - by investigating its ultralow frequency interlayer phonon vibration
modes, the layer dependent optical bandgap, and the anisotropic
photoluminescence (PL) spectra for the first time. The ultralow frequency
interlayer Raman spectra combined with the first study of polarization-resolved
high frequency Raman spectra in mono- and bi-layer ReSe2 allows deterministic
identification of its layer number and crystal orientation. PL measurements
show anisotropic optical emission intensity with bandgap increasing from 1.26
eV in the bulk to 1.32 eV in monolayer, consistent with the theoretical results
based on first-principle calculations. The study of the layer-number dependence
of the Raman modes and the PL spectra reveals the relatively weak van der Waals
interaction and 2D quantum confinement in atomically-thin ReSe2.Comment: 17 pages, 5 figures, supplementary informatio
A meta-analytic study of the neural systems for auditory processing of lexical tones
The neural systems of lexical tone processing have been studied for many years. However, previous findings have been mixed with regard to the hemispheric specialization for the perception of linguistic pitch patterns in native speakers of tonal language. In this study, we performed two activation likelihood estimation (ALE) meta-analyses, one on neuroimaging studies of auditory processing of lexical tones in tonal languages (17 studies), and the other on auditory processing of lexical information in non-tonal languages as a control analysis for comparison (15 studies). The lexical tone ALE analysis showed significant brain activations in bilateral inferior prefrontal regions, bilateral superior temporal regions and the right caudate, while the control ALE analysis showed significant cortical activity in the left inferior frontal gyrus and left temporo-parietal regions. However, we failed to obtain significant differences from the contrast analysis between two auditory conditions, which might be caused by the limited number of studies available for comparison. Although the current study lacks evidence to argue for a lexical tone specific activation pattern, our results provide clues and directions for future investigations on this topic, more sophisticated methods are needed to explore this question in more depth as well.published_or_final_versio
Output entanglement and squeezing of two-mode fields generated by a single atom
A single four-level atom interacting with two-mode cavities is investigated.
Under large detuning condition, we obtain the effective Hamiltonian which is
unitary squeezing operator of two-mode fields. Employing the input-output
theory, we find that the entanglement and squeezing of the output fields can be
achieved. By analyzing the squeezing spectrum, we show that asymmetric detuning
and asymmetric atomic initial state split the squeezing spectrum from one
valley into two minimum values, and appropriate leakage of the cavity is needed
for obtaining output entangled fields
- …
