187,318 research outputs found
Aberrant posterior cingulate connectivity classify first-episode schizophrenia from controls: A machine learning study
Background Posterior cingulate cortex (PCC) is a key aspect of the default mode network (DMN). Aberrant PCC functional connectivity (FC) is implicated in schizophrenia, but the potential for PCC related changes as biological classifier of schizophrenia has not yet been evaluated. Methods We conducted a data-driven approach using resting-state functional MRI data to explore differences in PCC-based region- and voxel-wise FC patterns, to distinguish between patients with first-episode schizophrenia (FES) and demographically matched healthy controls (HC). Discriminative PCC FCs were selected via false discovery rate estimation. A gradient boosting classifier was trained and validated based on 100 FES vs. 93 HC. Subsequently, classification models were tested in an independent dataset of 87 FES patients and 80 HC using resting-state data acquired on a different MRI scanner. Results Patients with FES had reduced connectivity between PCC and frontal areas, left parahippocampal regions, left anterior cingulate cortex, and right inferior parietal lobule, but hyperconnectivity with left lateral temporal regions. Predictive voxel-wise clusters were similar to region-wise selected brain areas functionally connected with PCC in relation to discriminating FES from HC subject categories. Region-wise analysis of FCs yielded a relatively high predictive level for schizophrenia, with an average accuracy of 72.28% in the independent samples, while selected voxel-wise connectivity yielded an accuracy of 68.72%. Conclusion FES exhibited a pattern of both increased and decreased PCC-based connectivity, but was related to predominant hypoconnectivity between PCC and brain areas associated with DMN, that may be a useful differential feature revealing underpinnings of neuropathophysiology for schizophrenia
Recommended from our members
Effect factors of part-load performance for various Organic Rankine cycles using in engine waste heat recovery
The Organic Rankine Cycle (ORC) is regarded as one of the most promising waste heat recovery technologies for electricity generation engines. Since the engine usually operates under different working conditions, it is important to research the part-load performance of the ORC. In order to reveal the effect factors of part-load performance, four different forms of ORCs are compared in the study with dynamic math models established in SIMULINK. They are the ORC applying low temperature working fluid R245fa with a medium heat transfer cycle, the ORCs with high temperature working fluid toluene heated directly by exhaust condensing at low pressure and high pressure, and the double-stage ORC. It is regarded that the more slowly the system output power decreases, the better part-load performance it has. Based on a comparison among the four systems, the effects of evaporating pressure, condensing condition, working fluid, and system structure on part-load performance are revealed in the work. Further, it is found that the system which best matches with the heat source not only performs well under the design conditions, but also has excellent part-load performance
Recommended from our members
Assessing the effects of technological progress on energy efficiency in the construction industry: A case of China
Energy-saving technologies in buildings have received great attention from energy efficiency researchers in the construction sector. Traditional research tends to focus on the energy used during building operation and in construction materials production, but it usually neglects the energy consumed in the building construction process. Very few studies have explored the impacts of technological progress on energy efficiency in the construction industry. This paper presents a model of the building construction process based on Cobb-Douglas production function. The model estimates the effects of technological progress on energy efficiency with the objective to examine the role that technological progress plays in energy savings in China's construction industry. The modeling results indicated that technological progress improved energy efficiency by an average of 7.1% per year from 1997 to 2014. Furthermore, three main technological progress factors (the efficiency of machinery and equipment, the proportion change of the energy structure, and research and development investment) were selected to analyze their effects on energy efficiency improvement. These positive effects were verified, and results show the effects of first two factors are significant. Finally, recommendations for promoting energy efficiency in the construction industry are proposed
ASAP : towards accurate, stable and accelerative penetrating-rank estimation on large graphs
Pervasive web applications increasingly require a measure of similarity among objects. Penetrating-Rank (P-Rank) has been one of the promising link-based similarity metrics as it provides a comprehensive way of jointly encoding both incoming and outgoing links into computation for emerging applications. In this paper, we investigate P-Rank efficiency problem that encompasses its accuracy, stability and computational time. (1) We provide an accuracy estimate for iteratively computing P-Rank. A symmetric problem is to find the iteration number K needed for achieving a given accuracy ε. (2) We also analyze the stability of P-Rank, by showing that small choices of the damping factors would make P-Rank more stable and well-conditioned. (3) For undirected graphs, we also explicitly characterize the P-Rank solution in terms of matrices. This results in a novel non-iterative algorithm, termed ASAP , for efficiently computing P-Rank, which improves the CPU time from O(n 4) to O( n 3 ). Using real and synthetic data, we empirically verify the effectiveness and efficiency of our approaches
- …
