1,193 research outputs found
Second Harmonic Generation for a Dilute Suspension of Coated Particles
We derive an expression for the effective second-harmonic coefficient of a
dilute suspension of coated spherical particles. It is assumed that the coating
material, but not the core or the host, has a nonlinear susceptibility for
second-harmonic generation (SHG). The resulting compact expression shows the
various factors affecting the effective SHG coefficient. The effective SHG per
unit volume of nonlinear coating material is found to be greatly enhanced at
certain frequencies, corresponding to the surface plasmon resonance of the
coated particles. Similar expression is also derived for a dilute suspension of
coated discs. For coating materials with third-harmonic (THG) coefficient,
results for the effective THG coefficients are given for the cases of coated
particles and coated discs.Comment: 11 pages, 3 figures; accepted for publication in Phys. Rev.
Dimensional Crossover in the Effective Second Harmonic Generation of Films of Random Dielectrics
The effective nonlinear response of films of random composites consisting of
a binary composite with nonlinear particles randomly embedded in a linear host
is theoretically and numerically studied. A theoretical expression for the
effective second harmonic generation susceptibility, incorporating the
thickness of the film, is obtained by combining a modified effective-medium
approximation with the general expression for the effective second harmonic
generation susceptibility in a composite. The validity of the thoretical
results is tested against results obtained by numerical simulations on random
resistor networks. Numerical results are found to be well described by our
theory. The result implies that the effective-medium approximation provides a
convenient way for the estimation of the nonlinear response in films of random
dielectrics.Comment: 9 pages, 2 figures; accepted for publication in Phys. Rev.
Multiple superconducting gap and anisotropic spin fluctuations in iron arsenides: Comparison with nickel analog
We present extensive 75As NMR and NQR data on the superconducting arsenides
PrFeAs0.89F0.11 (Tc=45 K), LaFeAsO0.92F0.08 (Tc=27 K), LiFeAs (Tc = 17 K) and
Ba0.72K0.28Fe2As2 (Tc = 31.5 K) single crystal, and compare with the nickel
analog LaNiAsO0.9F0.1 (Tc=4.0 K) . In contrast to LaNiAsO0.9F0.1 where the
superconducting gap is shown to be isotropic, the spin lattice relaxation rate
1/T1 in the Fe-arsenides decreases below Tc with no coherence peak and shows a
step-wise variation at low temperatures. The Knight shift decreases below Tc
and shows a step-wise T variation as well. These results indicate spinsinglet
superconductivity with multiple gaps in the Fe-arsenides. The Fe
antiferromagnetic spin fluctuations are anisotropic and weaker compared to
underdoped copper-oxides or cobalt-oxide superconductors, while there is no
significant electron correlations in LaNiAsO0.9F0.1. We will discuss the
implications of these results and highlight the importance of the Fermi surface
topology.Comment: 6 pages, 11 figure
Mass measurements of neutron-deficient Y, Zr, and Nb isotopes and their impact on rp and νp nucleosynthesis processes
© 2018 The Authors. Published by Elsevier B.V. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Using isochronous mass spectrometry at the experimental storage ring CSRe in Lanzhou, the masses of 82Zr and 84Nb were measured for the first time with an uncertainty of ∼10 keV, and the masses of 79Y, 81Zr, and 83Nb were re-determined with a higher precision. The latter are significantly less bound than their literature values. Our new and accurate masses remove the irregularities of the mass surface in this region of the nuclear chart. Our results do not support the predicted island of pronounced low α separation energies for neutron-deficient Mo and Tc isotopes, making the formation of Zr–Nb cycle in the rp-process unlikely. The new proton separation energy of 83Nb was determined to be 490(400) keV smaller than that in the Atomic Mass Evaluation 2012. This partly removes the overproduction of the p-nucleus 84Sr relative to the neutron-deficient molybdenum isotopes in the previous νp-process simulations.Peer reviewe
The Effects of Disorder on the Quantum Hall State
A disorder-averaged Hartree-Fock treatment is used to compute the density of
single particle states for quantum Hall systems at filling factor . It
is found that transport and spin polarization experiments can be simultaneously
explained by a model of mostly short-range effective disorder. The slope of the
transport gap (due to quasiparticles) in parallel field emerges as a result of
the interplay between disorder-induced broadening and exchange, and has
implications for skyrmion localization.Comment: 4 pages, 3 eps figure
Striped antiferromagnetic order and electronic properties of stoichiometric LiFeAs from first-principles calculations
We investigate the structural, electronic, and magnetic properties of
stoichiometric LiFeAs by using state-of-the-arts first-principles method. We
find the magnetic ground-state by comparing the total energies among all the
possible magnetic orders. Our calculated internal positions of Li and As are in
good agreement with experiment. Our results show that stoichiometric LiFeAs has
almost the same striped antiferromagnetic spin order as other FeAs-based parent
compounds and tetragonal FeSe do, and the experimental fact that no magnetic
phase transition has been observed at finite temperature is attributed to the
tiny inter-layer spin coupling
The pole in
Using a sample of 58 million events recorded in the BESII detector,
the decay is studied. There are conspicuous
and signals. At low mass, a large
broad peak due to the is observed, and its pole position is determined
to be - MeV from the mean of six analyses.
The errors are dominated by the systematic errors.Comment: 15 pages, 6 figures, submitted to PL
Measurements of Cabibbo Suppressed Hadronic Decay Fractions of Charmed D0 and D+ Mesons
Using data collected with the BESII detector at storage ring
Beijing Electron Positron Collider, the measurements of relative branching
fractions for seven Cabibbo suppressed hadronic weak decays ,
, and , , and are presented.Comment: 11 pages, 5 figure
The energy spectrum of all-particle cosmic rays around the knee region observed with the Tibet-III air-shower array
We have already reported the first result on the all-particle spectrum around
the knee region based on data from 2000 November to 2001 October observed by
the Tibet-III air-shower array. In this paper, we present an updated result
using data set collected in the period from 2000 November through 2004 October
in a wide range over 3 decades between eV and eV, in which
the position of the knee is clearly seen at around 4 PeV. The spectral index is
-2.68 0.02(stat.) below 1PeV, while it is -3.12 0.01(stat.) above 4
PeV in the case of QGSJET+HD model, and various systematic errors are under
study now.Comment: 12 pages, 7 figures, accepted by Advances in space researc
Nanoparticle-Induced Unusual Melting and Solidification Behaviours of Metals
Effective control of melting and solidification behaviours of materials is significant for numerous applications. It has been a long-standing challenge to increase the melted zone (MZ) depth while shrinking the heat-affected zone (HAZ) size during local melting and solidification of materials. In this paper, nanoparticle-induced unusual melting and solidification behaviours of metals are reported that effectively solve this long-time dilemma. By introduction of Al(2)O(3) nanoparticles, the MZ depth of Ni is increased by 68%, while the corresponding HAZ size is decreased by 67% in laser melting at a pulse energy of 0.18 mJ. The addition of SiC nanoparticles shows similar results. The discovery of the unusual melting and solidification of materials that contain nanoparticles will not only have impacts on existing melting and solidification manufacturing processes, such as laser welding and additive manufacturing, but also on other applications such as pharmaceutical processing and energy storage
- …
