3,981 research outputs found

    Effects of the integrative mind-body intervention on depression, sleep disturbances and plasma IL-6

    Get PDF
    Letter to the Editorpublished_or_final_versio

    Chlorophyll a fluorescence responses of Haloxylon ammodendron seedlings subjected to progressive saline stress in the Tarim desert highway ecological shelterbelt

    Get PDF
    In order to assess the long-term impacts of saline groundwater irrigation to Haloxylon ammodendron, one of the main shrubs in the Tarim desert highway ecological shelterbelt, we irrigated the H. ammodendron seedlings with progressive saline groundwater (3-30 g L-1, simulation environment in the Tarim desert highway ecological shelterbelt) and investigated the diurnal variations of chlorophyll a (Chl a) fluorescence parameters, such as maximal quantum yield of photosystem II (PSII) photochemistry (F-v/F-m), quantum yield of photochemical energy conversion in PSII (Y-II), the apparent rate of electron transport at the PSII level (ETR), photochemical quenching coefficient (q(P)), non-photochemical quenching (NPQ), quantum yield of nonregulated non-photochemical energy loss in PSII (Y-NO) and quantum yield of regulated non-photochemical energy loss in PSII (Y-II), at approximately 2-h intervals. F-v/F-m with 5 g L-1 (S2) was lower than that with 2 g L-1 (S1) but a little higher than 20 g L-1 (S5), respectively. Under the low light [photosyntheticallyactive radiation (PAR) a parts per thousand currency sign 250 mu mol m(-2) s(-1), at 08:00, 10:00 and 20:00 h of the local time], S1 kept the lowest Y-II and the highest Y-NPQ; while under the high light (PAR a parts per thousand yen 1500 mu mol m(-2) s(-1)), the Y-II performed S1 &gt; S2 &gt; S5, and the reverse Y-NPQ; under mild light (250 mu mol m(t-2) s(-1) a parts per thousand currency sign PAR a parts per thousand currency sign 1500 mu mol m(-2) s(-1)), S1 remained the highest Y-II, no matter the light and the salinity, the similar Y-NO almost occurred basically. The results showed that the sand-binding plant H. ammodendron could regulate its energy-utilizing strategies. The S2 might be the most suitable salinity of the irrigation water for H. ammodendron in the Tarim desert highway ecological shelterbelt in the northwest of China. </div

    Solutions of Several Coupled Discrete Models in terms of Lame Polynomials of Order One and Two

    Full text link
    Coupled discrete models abound in several areas of physics. Here we provide an extensive set of exact quasiperiodic solutions of a number of coupled discrete models in terms of Lame polynomials of order one and two. Some of the models discussed are (i) coupled Salerno model, (ii) coupled Ablowitz-Ladik model, (iii) coupled saturated discrete nonlinear Schrodinger equation, (iv) coupled phi4 model, and (v) coupled phi6 model. Furthermore, we show that most of these coupled models in fact also possess an even broader class of exact solutions.Comment: 31 pages, to appear in Pramana (Journal of Physics) 201

    The vertical distribution of the root system of the desert highway shelterbelt in the hinterland of the Taklimakan Desert

    Get PDF
    In this work, the vertical distribution of the root system in the Tarim Desert Highway shelterbelt under high salinity water drip irrigation was investigated. The effect of site condition and shelterbelt age was studied. The root sample was collected by plant side soil column excavation. The root distribution was found to be dependent on soil texture, aspect, and plant age. In harden sand, the roots were mostly in the 0-40 cm soil. The root distribution is deep in flat sandy ground and ridge sand. In unit soil volume, the root weight of flat sandy ground was the highest. Compared with the shady slope, the sunny slope had much high total root weight, deeper root distribution, but less hair root. The root weight increased rapidly with the increase of the shelterbelt ages, and the most substantial increase was observed in the early years after forest implantation

    The salt accumulation at the shifting aeolian sandy soil surface with high salinity groundwater drip irrigation in the hinterland of the Taklimakan Desert

    Get PDF
    The EC analysis and water serial sampling was performed in the Tarim Desert Highway shelterbelt to explore the water and salt dynamics of the shallow aeolian sandy soil (0-30cm) under high salinity groundwater drip irrigation. It was found that in one irrigation cycle, the EC of the shallow shifting aeolian sandy soil (0-30cm) increased while the water content decreased. The EC of the surface aeolian sandy soil at the wetting front was far greater than that of the wetting area or the outside of the wetting area. During the irrigation cycle, the EC of the wetting front and the wetting area changed at a significant magnitude, whereas the EC of the outside of the wetting area remained largely steady. The horizontal influence distance of drip irrigation on the salt accumulation at the soil surface was about 100 cm, and the vertical influence depth was 5 cm. The three most abundant ions in the accumulated salt at the aeolian sandy soil surface were Na+, Cl- and SO42-. The salt accumulation at the soil surface was influenced by air temperature, wind speed, mineralization of irrigation water, sand burial thickness, soil texture, and litter content

    A spin triplet supercurrent through the half-metallic ferromagnet CrO2

    Full text link
    In general, conventional superconductivity should not occur in a ferromagnet, though it has been seen in iron under pressure. Moreover, theory predicts that the current is always carried by pairs of electrons in a spin singlet state, so conventional superconductivity decays very rapidly when in contact with a ferromagnet, which normally prohibits the existence of singlet pairs. It has been predicted that this rapid spatial decay would not occur when spin triplet superconductivity could be induced in the ferromagnet. Here we report a Josephson supercurrent through the strong ferromagnet CrO2, from which we infer that it is a spin triplet supercurrent. Our experimental setup is different from those envisaged in the earlier predictions, but we conclude that the underlying physical explanation for our result is a conversion from spin singlet to spin triplets at the interface. The supercurrent can be switched with the direction of the magnetization, analogous to spin valve transistors, and therefore could enable magnetization-controlled Josephson junctions.Comment: 14 pages, including 3 figure

    The dynamics variation of soil moisture of shelterbelts along the Tarim Desert Highway

    Get PDF
    We studied the variation of soil moisture as well as its regularity over the irrigation cycle at shelterbelts along the Tarim Desert Highway at different site types and different planting years. The results show that: (1) There is an obvious temporal variation of soil moisture within a typical irrigation period in shelterbelts along the Tarim Desert Highway, and the soil water storage varied linearly with the number of days after irrigation. Along the direction perpendicular to the soil top, the soil profile can be divided into four layers and each shows different dynamics of soil moisture variation, including the quickly changing layer (0-20 cm), the active layer (20-60 cm), the weakly layer (60-100 cm), and the regulated layer (under 100 cm). (2) Both the soil moisture and soil water content decreased gradually with the number of planting year, while the soil water deficit increased. It indicates that shelterbelts along the Tarim Desert Highway can retain the water accumulated from previous years. (3) The soil water storage of harden sand is the maximum among all types of sites. Specifically, it is about 1.58 times higher than that of longitudinal dune, 1.15 times higher than clay, and 1.43 times higher than flat sand. Its soil water deficit was over 900 mm

    Spin-Imbalance in a One-Dimensional Fermi Gas

    Full text link
    Superconductivity and magnetism generally do not coexist. Changing the relative number of up and down spin electrons disrupts the basic mechanism of superconductivity, where atoms of opposite momentum and spin form Cooper pairs. Nearly forty years ago Fulde and Ferrell and Larkin and Ovchinnikov proposed an exotic pairing mechanism (FFLO) where magnetism is accommodated by formation of pairs with finite momentum. Despite intense theoretical and experimental efforts, however, polarized superconductivity remains largely elusive. Here we report experimental measurements of density profiles of a two spin mixture of ultracold 6Li atoms trapped in an array of one dimensional (1D) tubes, a system analogous to electrons in 1D wires. At finite spin imbalance, the system phase separates with an inverted phase profile in comparison to the three-dimensional case. In 1D we find a partially polarized core surrounded by wings composed of either a completely paired BCS superfluid or a fully polarized Fermi gas, depending on the degree of polarization. Our observations are in quantitative agreement with theoretical calculations in which the partially polarized phase is found to be a 1D analogue of the FFLO state. This study demonstrates how ultracold atomic gases in 1D may be used to create non-trivial new phases of matter, and also paves the way for direct observation and further study of the FFLO phase.Comment: 30 pages, 7 figure
    corecore