160,813 research outputs found
Random perturbation to the geodesic equation
We study random "perturbation" to the geodesic equation. The geodesic
equation is identified with a canonical differential equation on the
orthonormal frame bundle driven by a horizontal vector field of norm . We
prove that the projections of the solutions to the perturbed equations,
converge, after suitable rescaling, to a Brownian motion scaled by
where is the dimension of the state space. Their
horizontal lifts to the orthonormal frame bundle converge also, to a scaled
horizontal Brownian motion.Comment: Published at http://dx.doi.org/10.1214/14-AOP981 in the Annals of
Probability (http://www.imstat.org/aop/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Low-Profile Fully-Printed Multifrequency Monopoles Loaded with Complementary Metamaterial Transmission Line
The design of a new class of multifrequency monopoles by loading a set of resonant-type complementary metamaterial transmission lines (CMTL) is firstly presented. Two types of CMTL elements are comprehensively explored: the former is the epsilon negative (ENG) one by loading complementary split ring resonators (CSRRs) with different configurations on the signal strip, whereas the latter is the double negative (DNG) one by incorporating the CSRRs and capacitive gaps. In both cases, the CMTLs are considered with different number of unit cells. By cautiously controlling the geometrical parameters of element structure, five antenna prototypes coving different communication standards (GSM, UMTS, DMB and WiMAX) are designed, fabricated and measured. Numerical and experimental results illustrate that the zeroth-order resonance frequencies of the ENG and DNG monopoles are in desirable consistency. Moreover, of all operating frequencies the antennas exhibit fairly good impedance matching performances better than -10dB and quasi-omnidirectional radiation patterns
- …
