13,854 research outputs found

    Progressive amorphization of GeSbTe phase-change material under electron beam irradiation

    Full text link
    Fast and reversible phase transitions in chalcogenide phase-change materials (PCMs), in particular, Ge-Sb-Te compounds, are not only of fundamental interests, but also make PCMs based random access memory (PRAM) a leading candidate for non-volatile memory and neuromorphic computing devices. To RESET the memory cell, crystalline Ge-Sb-Te has to undergo phase transitions firstly to a liquid state and then to an amorphous state, corresponding to an abrupt change in electrical resistance. In this work, we demonstrate a progressive amorphization process in GeSb2Te4 thin films under electron beam irradiation on transmission electron microscope (TEM). Melting is shown to be completely absent by the in situ TEM experiments. The progressive amorphization process resembles closely the cumulative crystallization process that accompanies a continuous change in electrical resistance. Our work suggests that if displacement forces can be implemented properly, it should be possible to emulate symmetric neuronal dynamics by using PCMs

    Controlled Levofloxacin Release and Antibacterial Properties of β-Cyclodextrins-Grafted Polypropylene Mesh Devices for Hernia Repair.

    Get PDF
    Mesh infection is a major complication of hernia repair. After knitted mesh implantation, bacteria can grow within textile structures causing infection. In this work, polypropylene (PP) mesh devices were two-step grafted with hexamethylene diisocyanate (HDI) and β⁻cyclodexrins (CD) and then loaded with suitable antimicrobial levofloxacin HCL for hernia mesh-infection prevention. First, oxygen plasma was able to create surface roughness, then HDI was successfully grafted onto PP fiber surfaces. Afterwards, CD was covalently grafted onto the HDI treated PP meshes, and levofloxacin HCL (LVFX) was loaded into the CD cavity of the modified meshes. The modified devices were evaluated for sustained antibiotic properties and drug-release profiles in a phosphate buffer, and sustained drug release was observed between interfaces of meshes and aqueous environment. The antibiotic-loaded PP mesh samples demonstrated sustained antibacterial properties for 7 and 10 days, respectively, against both Gram-negative and Gram-positive bacteria. The CD-captured levofloxacin HCL showed burst release after 6 h but later exhibited sustained release for the next 48 h. Among all samples, the modified mesh LVFX-6 was more stable and showed more sustained drug release and could be employed in future clinical applications

    CPCP violation induced by the double resonance for pure annihilation decay process in Perturbative QCD

    Full text link
    In Perturbative QCD (PQCD) approach we study the direct CPCP violation in the pure annihilation decay process of Bˉs0π+ππ+π\bar{B}^0_{s}\rightarrow\pi^+\pi^-\pi^+\pi^- induced by the ρ\rho and ω\omega double resonance effect. Generally, the CPCP violation is small in the pure annihilation type decay process. However, we find that the CPCP violation can be enhanced by double ρω\rho-\omega interference when the invariant masses of the π+π\pi^+\pi^- pairs are in the vicinity of the ω\omega resonance. For the decay process of Bˉs0π+ππ+π\bar{B}^0_{s}\rightarrow\pi^+\pi^-\pi^+\pi^-, the maximum CPCP violation can reach 28.64{\%}

    Tailoring excitonic states of van der Waals bilayers through stacking configuration, band alignment and valley-spin

    Full text link
    Excitons in monolayer semiconductors have large optical transition dipole for strong coupling with light field. Interlayer excitons in heterobilayers, with layer separation of electron and hole components, feature large electric dipole that enables strong coupling with electric field and exciton-exciton interaction, at the cost that the optical dipole is substantially quenched (by several orders of magnitude). In this letter, we demonstrate the ability to create a new class of excitons in transition metal dichalcogenide (TMD) hetero- and homo-bilayers that combines the advantages of monolayer- and interlayer-excitons, i.e. featuring both large optical dipole and large electric dipole. These excitons consist of an electron that is well confined in an individual layer, and a hole that is well extended in both layers, realized here through the carrier-species specific layer-hybridization controlled through the interplay of rotational, translational, band offset, and valley-spin degrees of freedom. We observe different species of such layer-hybridized valley excitons in different heterobilayer and homobilayer systems, which can be utilized for realizing strongly interacting excitonic/polaritonic gases, as well as optical quantum coherent controls of bidirectional interlayer carrier transfer either with upper conversion or down conversion in energy

    Generation of Oligodendrocyte Progenitor Cells From Mouse Bone Marrow Cells.

    Get PDF
    Oligodendrocyte progenitor cells (OPCs) are a subtype of glial cells responsible for myelin regeneration. Oligodendrocytes (OLGs) originate from OPCs and are the myelinating cells in the central nervous system (CNS). OLGs play an important role in the context of lesions in which myelin loss occurs. Even though many protocols for isolating OPCs have been published, their cellular yield remains a limit for clinical application. The protocol proposed here is novel and has practical value; in fact, OPCs can be generated from a source of autologous cells without gene manipulation. Our method represents a rapid, and high-efficiency differentiation protocol for generating mouse OLGs from bone marrow-derived cells using growth-factor defined media. With this protocol, it is possible to obtain mature OLGs in 7-8 weeks. Within 2-3 weeks from bone marrow (BM) isolation, after neurospheres formed, the cells differentiate into Nestin+ Sox2+ neural stem cells (NSCs), around 30 days. OPCs specific markers start to be expressed around day 38, followed by RIP+O4+ around day 42. CNPase+ mature OLGs are finally obtained around 7-8 weeks. Further, bone marrow-derived OPCs exhibited therapeutic effect in shiverer (Shi) mice, promoting myelin regeneration and reducing the tremor. Here, we propose a method by which OLGs can be generated starting from BM cells and have similar abilities to subventricular zone (SVZ)-derived cells. This protocol significantly decreases the timing and costs of the OLGs differentiation within 2 months of culture

    Method of determining cosmological parameter ranges with samples of candles with an intrinsic distribution

    Full text link
    In this paper, the effect of the intrinsic distribution of cosmological candles is investigated. We find that, in the case of a narrow distribution, the deviation of the observed modulus of sources from the expected central value could be estimated within a ceratin range. We thus introduce a lower and upper limits of χ2\chi ^{2}, χmin2\chi_{\min}^{2} and χmax2 \chi_{\max}^{2}, to estimate cosmological parameters by applying the conventional minimizing χ2\chi ^{2} method. We apply this method to a gamma-ray burst (GRB) sample as well as to a combined sample including this GRB sample and an SN Ia sample. Our analysis shows that: a) in the case of assuming an intrinsic distribution of candles of the GRB sample, the effect of the distribution is obvious and should not be neglected; b) taking into account this effect would lead to a poorer constraint of the cosmological parameter ranges. The analysis suggests that in the attempt of constraining the cosmological model with current GRB samples, the results tend to be worse than what previously thought if the mentioned intrinsic distribution does exist.Comment: 6 pages,4 figures,1 tables.Data updated. Main conclusion unchange

    Phenomenological Scaling of Rapidity Dependence for Anisotropic Flows in 25 MeV/nucleon Ca + Ca by Quantum Molecular Dynamics Model

    Full text link
    Anisotropic flows (v1v_1, v2v_2, v3v_3 and v4v_4) of light fragments up till the mass number 4 as a function of rapidity have been studied for 25 MeV/nucleon 40^{40}Ca + 40^{40}Ca at large impact parameters by Quantum Molecular Dynamics model. A phenomenological scaling behavior of rapidity dependent flow parameters vnv_n (n = 1, 2, 3 and 4) has been found as a function of mass number plus a constant term, which may arise from the interplay of collective and random motions. In addition, v4/v22v_4/{v_2}^2 keeps almost independent of rapidity and remains a rough constant of 1/2 for all light fragments.Comment: 4 pages, 5 figure

    Characteristic analysis of α-fetoprotein-producing gastric carcinoma in China

    Get PDF
    α-Fetoprotein-producing gastric cancer (AFPGC) is a rare type of gastric cancer. The largest population of patients with AFPGC is found in China. In the present study, a total of 4,779 GC patients, including 317 AFPGC patients, from 11 clinical studies in China with a general AFPGC/GC ratio of 6.63% were summarized and analyzed. On the basis of analysis of the clinical data, the patients with AFPGC had larger tumor size, weaker cell differentiation, worse histopathological types, deeper serosal infiltration, more lymph node and liver metastases, poorer stages, shorter survival time and more positive expression of vascular endothelial growth factors than the patients without AFPGC. Our observation is consistent with previous results reported in studies of AFPGC. Overall, AFPGC is a subtype of GC with a poor prognosis
    corecore