2,595 research outputs found
Assessment and Management of Hypertension among Patients on Peritoneal Dialysis
Approximately 7%-10% of patients with ESKD worldwide undergo peritoneal dialysis (PD) as kidney replacement therapy. The continuous nature of this dialytic modality and the absence of acute shifts in pressure and volume parameters is an important differentiation between PD and in-center hemodialysis. However, the burden of hypertension and prognostic association of BP with mortality follow comparable patterns in both modalities. Although management of hypertension uses similar therapeutic principles, long-term preservation of residual diuresis and longevity of peritoneal membrane function require particular attention in the prescription of the appropriate dialysis regimen among those on PD. Dietary sodium restriction, appropriate use of icodextrin, and limited exposure of peritoneal membrane to bioincompatible solutions, as well as adaptation of the PD regimen to the peritoneal transport characteristics, are first-line therapeutic strategies to achieve adequate volume control with a potential long-term benefit on technique survival. Antihypertensive drug therapy is a second-line therapeutic approach, used when BP remains unresponsive to the above volume management strategies. In this article, we review the available evidence on epidemiology, diagnosis, and treatment of hypertension among patients on PD and discuss similarities and differences between PD and in-center hemodialysis. We conclude with a call for randomized trials aiming to elucidate several areas of uncertainty in management of hypertension in the PD population
Transport properties of fluids in nanochannels: bridging nano to macro
This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.A method of calculating transport properties in nanochannels is presented in this work. The Molecular Dynamics simulation of a system of liquid argon flowing in a nanochannel formed by krypton walls was the basis for our analysis concerning transport properties and specifically diffusion coefficient, shear viscosity and thermal conductivity. It is shown that for confined systems, such as nanochannels, if one of the transport properties is known, then the others can be estimated. The simulation results reveal that all properties approach bulk values at relatively small channel widths, at about 6-7nm. Below this critical point, the wall effect on fluid atoms is strong and the transport properties change dramatically. In order to extend the calculations over rough-wall nanochannels, we apply the relation extracted for flat wall channels to channels with walls consisted of successive rectangular protrusions and cavities
Transport properties and structure of fluids in hydrophobic/hydrophilic nanochannels
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.When downsizing towards the nanoscale, system dimensions have been found to affect channel flows mainly
because of the presence of the walls that interact strongly with fluid particles. Parameters which are not taken into account at the classical theory continuum theory at the macroscale, should be taken into account at the nano or even micro-scale where the surface to volume ratio increases significantly. Such property is the wall/fluid interaction which determines the wetting (hydrophilic behavior) or not (hydrophobic behavior) of a surface. We first investigate the effect of wall/fluid interaction on fluid atom distribution near the wall through the radial distribution function and, next, we calculate the three most important fluid transport properties, i.e., the diffusion coefficient, shear viscosity and thermal conductivity. Transport properties seem to be affected significantly in the channel region adjacent to the wall
Dissipative particle dynamics simulation of flow in periodically grooved three-dimensional nano- and micro-channels
This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.Nonequillibrium flow in three-dimensional grooved nano- and micro-channels is investigated using the Dissipative Particle Dynamics simulation method. Roughness is introduced by periodically placing rectangular protruding elements on the upper channel wall. The protrusion length and height are varied and their effect on the flow is examined. The computed macroscopic quantities of practical interest include density, velocity, pressure, and temperature profiles as well as relations between the friction factor and the Reynolds number. When compared to the smooth channel case, lower flow velocities are observed in the central part of the channel for all cases studied. This reduction of velocities becomes more pronounced as the protrusion height increases. For the micro-channel, density, pressure and temperature remain almost constant in the central part of the channel and their pattern near and inside the cavities depend on the protrusion shape. In the nanochannel case, lower temperatures and pressures are observed for all grooved channels relative to the smooth channel case. For all channel cases studied the calculated friction factor decreases as Reynolds number increases, following a power law relation
Noninvasive in vivo tracking of mesenchymal stem cells and evaluation of cell therapeutic effects in a murine model using a clinical 3.0 T MRI
Cardiac cell therapy with mesenchymal stem cells (MSCs) represents a promising treatment approach for endstage heart failure. However, little is known about the underlying mechanisms and the fate of the transplanted cells. The objective of the presented work is to determine the feasibility of magnetic resonance imaging (MRI) and in vivo monitoring after transplantation into infarcted mouse hearts using a clinical 3.0 T MRI device. The labeling procedure of bone marrow-derived MSCs with micron-sized paramagnetic iron oxide particles (MPIOs) did not affect the viability of the cells and their cell type-defining properties when compared to unlabeled cells. Using a clinical 3.0 T MRI scanner equipped with a dedicated small animal solenoid coil, 105 labeled MSCs could be detected and localized in the mouse hearts for up to 4 weeks after intramyocardial transplantation. Weekly ECG-gated scans using T1-weighted sequences were performed, and left ventricular function was assessed. Histological analysis of hearts confirmed the survival of labeled MSCs in the target area up to 4 weeks after transplantation. In conclusion, in vivo tracking of labeled MSCs using a clinical 3.0 T MRI scanner is feasible. In combination with assessment of heart function, this technology allows the monitoring of the therapeutic efficacy of regenerative therapies in a small animal model. </jats:p
Анализ функционирования свободных экономических зон в России (на примере ОЭЗ «Янтарь» в Калининградской области
Целью работы является анализ функционирования особых экономических зон в России, на примере особой экономической зоны «Янтарь» в Калининградской области.
В процессе исследования были изучены теоретические основы свободных экономических зон, так же проводился анализ состояния развития и перспектив свободных экономических зон в России, анализ состояния и эффективности особой экономической зоны «Янтарь» в Калининградской области. Кроме того, проводилось исследование деятельности таможенных органов на территории вышеупомянутой особой экономической зоны.
В результате исследования были выявлены проблемы, которые препятствуют эффективной деятельности особой экономической зоны «Янтарь» и деятельности таможенных органов на ее территории.The aim is to analyze the functioning of special economic zones in Russia, in particular by the example of a special economic zone "Amber" in the Kaliningrad region.
During the study in the course of research theoretical bases of free economic zones have been studied, also the analysis of a condition of development and prospects of free economic zones in Russia, the analysis of a condition and efficiency of the special economic zone "Amber" in the Kaliningrad region was carried out. In additional, research of activities of customs authorities in the territory of an above-mentioned special economic zone was conducted
The incidence and risk factors for new onset atrial fibrillation in the PROSPER study
Aims Atrial fibrillation/flutter (AF) is the most common arrhythmia in older people. It associates with reduced exercise capacity, increased risk of stroke, and mortality. We aimed to determine retrospectively whether pravastatin reduces the incidence of AF and whether any electrocardiographic measures or clinical conditions might be risk factors for its development. Methods and results The PROspective Study of Pravastatin in the Elderly at Risk (PROSPER) was a randomized, double-blind controlled trial that recruited 5804 individuals aged 70-82 years with a history of, or risk factors for, vascular disease. A total of 2891 were allocated to pravastatin and 2913 to placebo; mean follow-up was 3.2 years. Electrocardiograms (ECGs), which were recorded at baseline, annually thereafter, and at run-out, were processed by computer and reviewed manually. In all, 264 of 2912 (9.1%) of the placebo group and 283 of 2888 (9.8%) of the pravastatin-treated group developed AF [hazard ratio 1.08 (0.92,1.28), P = 0.35)]. Multivariate analysis showed that PR and QTc intervals, age, left ventricular hypertrophy, and ST-T abnormalities were related to development of AF after adjustment for many variables including alcohol consumption, which itself was univariately predictive of developing AF. Previous myocardial infarction on the ECG was not a risk factor. A history of vascular disease was strongly linked with developing AF but not diabetes and hypertension. Conclusion Pravastatin does not reduce the incidence of AF in older people at risk of vascular disease, at least in the short-medium term. Risk factors for AF include older age, prolongation of PR or QTc intervals, left ventricular hypertrophy, and ST-T abnormalities on the EC
- …
