3,168 research outputs found
Fast ground-state cooling of mechanical resonator with time-dependent optical cavities
We propose a feasible scheme to cool down a mechanical resonator (MR) in a
three-mirror cavity optomechanical system with controllable external optical
drives. Under the Born-Oppenheimer (BO) approximation, the whole dynamics of
the mechanical resonator and cavities is reduced to that of a time-dependent
harmonic oscillator, whose effective frequency can be controlled through the
optical driving fields. The fast cooling of the MR can be realized by
controlling the amplitude of the optical drives. Significantly, we further show
that the ground-state cooling may be achieved via the three-mirror cavity
optomechanical system without the resolved sideband condition.Comment: Some references including our previous works on cooling of mechanical
resonators are added, and some typos are corrected in this new version.
Comments are welcom
Nondeterminstic ultrafast ground state cooling of a mechanical resonator
We present an ultrafast feasible scheme for ground state cooling of a
mechanical resonator via repeated random time-interval measurements on an
auxiliary flux qubit. We find that the ground state cooling can be achieved
with \emph{several} such measurements. The cooling efficiency hardly depends on
the time-intervals between any two consecutive measurements. The scheme is also
robust against environmental noises.Comment: 4 pages, 3 figure
Population Genetic Structure of Monimopetalum chinense (Celastraceae), an Endangered Endemic Species of Eastern China
• Background and Aims Monimopetalum chinense (Celastraceae) standing for the monotypic genus is endemic to eastern China. Its conservation status is vulnerable as most populations are small and isolated. Monimopetalum chinense is capable of reproducing both sexually and asexually. The aim of this study was to understand the genetic structure of M. chinense and to suggest conservation strategies. • Methods One hundred and ninety individuals from ten populations sampled from the entire distribution area of M. chinense were investigated by using inter-simple sequence repeats (ISSR). • Key Results A total of 110 different ISSR bands were generated using ten primers. Low levels of genetic variation were revealed both at the species level (Isp = 0·183) and at the population level (Ipop = 0·083). High clonal diversity (D = 0·997) was found, and strong genetic differentiation among populations was detected (49·06 %). • Conclusions Small population size, possible inbreeding, limited gene flow due to short distances of seed dispersal, fragmentation of the once continuous range and subsequent genetic drift, may have contributed to shaping the population genetic structure of the specie
- …
