62,167 research outputs found

    Radiation Properties of GeV Narrow Line Seyfert 1 Galaxies

    Full text link
    The broadband SEDs of four gamma-ray NLS1s are compiled and explained with the leptonic model. It is found that their characteristics and fitting parameters of the observed SEDs are more like FSRQs than BL Lacs.Comment: 2 pages; 1 figure; to appear in the proceedings of the IAU Symposium 290, "Feeding compact objects: accretion on all scales", Beijing, 20-24 Aug 201

    Diffusion of Nonequilibrium Quasiparticles in a Cuprate Superconductor

    Full text link
    We report a transport study of nonequilibrium quasiparticles in a high-Tc cuprate superconductor using the transient grating technique. Low-intensity laser excitation (at photon energy 1.5 eV) was used to introduce a spatially periodic density of quasiparticles into a high-quality untwinned single crystal of YBa2Cu3O6.5. Probing the evolution of the initial density through space and time yielded the quasiparticle diffusion coefficient, and both inelastic and elastic scattering rates. The technique reported here is potentially applicable to precision measurement of quasiparticle dynamics, not only in cuprate superconductors, but in other electronic systems as well.Comment: 5 pages, 4 figure

    Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator

    Full text link
    Topological insulators have been proposed to be best characterized as bulk magnetoelectric materials that show response functions quantized in terms of fundamental physical constants. Here we lower the chemical potential of three-dimensional (3D) Bi2_2Se3_3 films to \sim 30 meV above the Dirac point, and probe their low-energy electrodynamic response in the presence of magnetic fields with high-precision time-domain terahertz polarimetry. For fields higher than 5 T, we observed quantized Faraday and Kerr rotations, whereas the DC transport is still semi-classical. A non-trivial Berry phase offset to these values gives evidence for axion electrodynamics and the topological magnetoelectric effect. The time structure used in these measurements allows a direct measure of the fine structure constant based on a topological invariant of a solid-state system.Comment: A shortened version has been published in Science. Discussion on AC quantum Hall effect without involving edge states is adde

    A New Model for the Hard Time Lags in Black Hole X-Ray Binaries

    Get PDF
    The time-dependent Comptonized output of a cool soft X-ray source drifting inward through an inhomogeneous hot inner disk or corona is numerically simulated. We propose that this scenario can explain from first principles the observed trends in the hard time lags and power spectra of the rapid aperiodic variability of the X-ray emission of Galactic black-hole candidates.Comment: 10 pages, including 2 figures; uses epsf.sty, rotate.sty; accepted for ApJ Letter
    corecore