3,336 research outputs found
Single channel wireless EEG device for real-time fatigue level detection
© 2015 IEEE. Driver fatigue problem is one of the important factors of traffic accidents. Recent years, many research had investigated that using EEG signals can effectively detect driver's drowsiness level. However, real-time monitoring system is required to apply these fatigue level detection techniques in the practical application, especially in the real-road driving. Therefore, it required less channels, portable and wireless, real-time monitoring and processing techniques for developing the real-time monitoring system. In this study, we develop a single channel wireless EEG device which can real-time detect driver's fatigue level on the mobile device such as smart phone or tablet. The developed device is investigated to obtain a better and precise understanding of brain activities of mental fatigue under driving, which is of great benefit for devolvement of detection of driving fatigue system. This system consists of a Bluetooth-enabled one channel EEG, a regression model, and smartphone, which was a platform recording and transforming the raw EEG data to useful driving status. In the experiment, this was a sustained-attention driving task to implement in a virtual-reality (VR) driving simulator. To training model and develop the system, we were performed for 15 subjects to study Electroencephalography (EEG) brain dynamics by using a mobile and wireless EEG device. Based on the outstanding training results, the leave-one-subject-out cross validation test obtained 90% fatigue detection accuracy. These results indicate that the combination of a smartphone and wireless EEG device constitutes an effective and easy wearable solution for detecting and preventing driver fatigue in real driving environments
HopScotch - a low-power renewable energy base station network for rural broadband access
The provision of adequate broadband access to communities in sparsely populated rural areas has in the past been severely restricted. In this paper, we present a wireless broadband access test bed running in the Scottish Highlands and Islands which is based on a relay network of low-power base stations. Base stations are powered by a combination of renewable sources creating a low cost and scalable solution suitable for community ownership. The use of the 5~GHz bands allows the network to offer large data rates and the testing of ultra high frequency ``white space'' bands allow expansive coverage whilst reducing the number of base stations or required transmission power. We argue that the reliance on renewable power and the intelligent use of frequency bands makes this approach an economic green radio technology which can address the problem of rural broadband access
Cardiosphere-derived cells suppress allogeneic lymphocytes by production of PGE2 acting via the EP4 receptor
derived cells (CDCs) are a cardiac progenitor cell population, which have been shown to possess cardiac regenerative properties and can improve heart function in a variety of cardiac diseases. Studies in large animal models have predominantly focussed on using autologous cells for safety, however allogeneic cell banks would allow for a practical, cost-effective and efficient use in a clinical setting. The aim of this work was to determine the immunomodulatory status of these cells using CDCs and lymphocytes from 5 dogs. CDCs expressed MHC I but not MHC II molecules and in mixed lymphocyte reactions demonstrated a lack of lymphocyte proliferation in response to MHC-mismatched CDCs. Furthermore, MHC-mismatched CDCs suppressed lymphocyte proliferation and activation in response to Concanavalin A. Transwell experiments demonstrated that this was predominantly due
to direct cell-cell contact in addition to soluble mediators whereby CDCs produced high levels of PGE2
under inflammatory conditions. This led to down-regulation of CD25 expression on lymphocytes via the
EP4 receptor. Blocking prostaglandin synthesis restored both, proliferation and activation (measured via CD25 expression) of stimulated lymphocytes. We demonstrated for the first time in a large animal model that CDCs inhibit proliferation in allo-reactive lymphocytes and have potent immunosuppressive activity mediated via PGE2
Single-shot compressed ultrafast photography at one hundred billion frames per second
The capture of transient scenes at high imaging speed has been long sought by photographers, with early examples being the well known recording in 1878 of a horse in motion and the 1887 photograph of a supersonic bullet. However, not until the late twentieth century were breakthroughs achieved in demonstrating ultrahigh-speed imaging (more than 10^5 frames per second). In particular, the introduction of electronic imaging sensors based on the charge-coupled device (CCD) or complementary metal–oxide–semiconductor (CMOS) technology revolutionized high-speed photography, enabling acquisition rates of up to 10^7 frames per second. Despite these sensors’ widespread impact, further increasing frame rates using CCD or CMOS technology is fundamentally limited by their on-chip storage and electronic readout speed. Here we demonstrate a two-dimensional dynamic imaging technique, compressed ultrafast photography (CUP), which can capture non-repetitive time-evolving events at up to 10^(11) frames per second. Compared with existing ultrafast imaging techniques, CUP has the prominent advantage of measuring an x–y–t (x, y, spatial coordinates; t, time) scene with a single camera snapshot, thereby allowing observation of transient events with temporal resolution as tens of picoseconds. Furthermore, akin to traditional photography, CUP is receive-only, and so does not need the specialized active illumination required by other single-shot ultrafast imagers. As a result, CUP can image a variety of luminescent—such as fluorescent or bioluminescent—objects. Using CUP, we visualize four fundamental physical phenomena with single laser shots only: laser pulse reflection and refraction, photon racing in two media, and faster-than-light propagation of non-information (that is, motion that appears faster than the speed of light but cannot convey information). Given CUP’s capability, we expect it to find widespread applications in both fundamental and applied sciences, including biomedical research
Behavioral testing and preliminary analysis of the hamster visual system
The dependence of visual orienting ability in hamsters on the axonal projections from retina to midbrain tectum provides experimenters with a good model for assessing the functional regeneration of this central nervous system axonal pathway. For reliable testing of this behavior, male animals at least 10-12 weeks old are prepared by regular pretesting, with all procedures carried out during the less active portion of the daily activity cycle. Using a sunflower seed attached to a small black ball held at the end of a stiff wire, and avoiding whisker contact, turning movements toward visual stimuli are video recorded from above. Because at the eye level, the nasal-most 30° of the visual field can be seen by both the eyes, this part of the field is avoided in assessments of a single side. Daily sessions consist of ten presentations per side. Measures are frequency of responding and detailed turning trajectories. Complete assessment of the functional return of behavior in this testing paradigm takes 3-6 months to complete.postprin
Evaluation of aldehyde dehydrogenase 1 promoter polymorphisms identified in human populations
BACKGROUND: Cytosolic aldehyde dehydrogenase, or ALDH1A1, functions in ethanol detoxification, metabolism of neurotransmitters, and synthesis of retinoic acid. Because the promoter region of a gene can influence gene expression, the ALDH1A1 promoter regions were studied to identify polymorphism, to assess their functional significance, and to determine whether they were associated with a risk for developing alcoholism.
METHODS: Sequence analysis was performed in the promoter region by using Asian, Caucasian, and African American subjects. The resulting polymorphisms were assessed for frequency in Asian, Caucasian, Jewish, and African American populations and tested for associations with alcohol dependence in Asian and African American populations of alcoholics and controls. The functional significance of each polymorphism was determined through in vitro expression analysis by using HeLa and HepG2 cells.
RESULTS: Two polymorphisms, a 17 base pair (bp) deletion (-416/-432) and a 3 bp insertion (-524), were discovered in the ALDH1A1 promoter region: ALDH1A1*2 and ALDH1A1*3, respectively. ALDH1A1*2 was observed at frequencies of 0.035, 0.023, 0.023, and 0.012 in the Asian, Caucasian, Jewish, and African American populations, respectively. ALDH1A1*3 was observed only in the African American population, at a frequency of 0.029. By using HeLa and HepG2 cells for in vitro expression, the activity of the luciferase reporter gene was significantly decreased after transient transfection of ALDH1A1*3-luciferase compared with the wild-type construct ALDH1A1*1-luciferase. In an African American population, a trend for higher frequencies of the ALDH1A1*2 and ALDH1A1*3 alleles was observed in a population of alcoholics (p = 0.03 and f = 0.12, respectively) compared with the control population.
CONCLUSIONS: ALDH1A1*2 and ALDH1A1*3 may influence ALDH1A1 gene expression. Both ALDH1A1*2 and ALDH1A1*3 produce a trend in an African American population that may be indicative of an association with alcoholism; however, more samples are required to validate this observation. The underlying mechanisms contributing to these trends are still unknown
Identification of chemokine receptors as potential modulators of endocrine resistance in oestrogen receptor–positive breast cancers
Introduction
Endocrine therapies target oestrogenic stimulation of breast cancer (BC) growth, but resistance remains problematic. Our aims in this study were (1) to identify genes most strongly associated with resistance to endocrine therapy by intersecting global gene transcription data from patients treated presurgically with the aromatase inhibitor anastrazole with those from MCF7 cells adapted to long-term oestrogen deprivation (LTED) (2) to assess the clinical value of selected genes in public clinical data sets and (3) to determine the impact of targeting these genes with novel agents.
Methods
Gene expression and Ki67 data were available from 69 postmenopausal women with oestrogen receptor–positive (ER+) early BC, at baseline and 2 weeks after anastrazole treatment, and from cell lines adapted to LTED. The functional consequences of target genes on proliferation, ER-mediated transcription and downstream cell signalling were assessed.
Results
By intersecting genes predictive of a poor change in Ki67 with those upregulated in LTED cells, we identified 32 genes strongly correlated with poor antiproliferative response that were associated with inflammation and/or immunity. In a panel of LTED cell lines, C-X-C chemokine receptor type 7 (CXCR7) and CXCR4 were upregulated compared to their wild types (wt), and CXCR7, but not CXCR4, was associated with reduced relapse-free survival in patients with ER+ BC. The CXCR4 small interfering RNA variant (siCXCR4) had no specific effect on the proliferation of wt-SUM44, wt-MCF7 and their LTED derivatives. In contrast, siCXCR7, as well as CCX733, a CXCR7 antagonist, specifically suppressed the proliferation of MCF7-LTED cells. siCXCR7 suppressed proteins associated with G1/S transition and inhibited ER transactivation in MCF7-LTED, but not wt-MCF7, by impeding association between ER and proline-, glutamic acid– and leucine-rich protein 1, an ER coactivator.
Conclusions
These data highlight CXCR7 as a potential therapeutic target warranting clinical investigation in endocrine-resistant BC
The Hubbard model within the equations of motion approach
The Hubbard model has a special role in Condensed Matter Theory as it is
considered as the simplest Hamiltonian model one can write in order to describe
anomalous physical properties of some class of real materials. Unfortunately,
this model is not exactly solved except for some limits and therefore one
should resort to analytical methods, like the Equations of Motion Approach, or
to numerical techniques in order to attain a description of its relevant
features in the whole range of physical parameters (interaction, filling and
temperature). In this manuscript, the Composite Operator Method, which exploits
the above mentioned analytical technique, is presented and systematically
applied in order to get information about the behavior of all relevant
properties of the model (local, thermodynamic, single- and two- particle ones)
in comparison with many other analytical techniques, the above cited known
limits and numerical simulations. Within this approach, the Hubbard model is
shown to be also capable to describe some anomalous behaviors of the cuprate
superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference
Wall-thickness-dependent strength of nanotubular ZnO
We fabricate nanotubular ZnO with wall thickness of 45, 92, 123 nm using nanoporous gold (np-Au) with ligament diameter at necks of 1.43 mu m as sacrificial template. Through micro-tensile and micro-compressive testing of nanotubular ZnO structures, we find that the exponent m in (sigma) over bar proportional to (rho) over bar (m), where (sigma) over bar is the relative strength and (rho) over bar is the relative density, for tension is 1.09 and for compression is 0.63. Both exponents are lower than the value of 1.5 in the Gibson-Ashby model that describes the relation between relative strength and relative density where the strength of constituent material is independent of external size, which indicates that strength of constituent ZnO increases as wall thickness decreases. We find, based on hole-nanoindentation and glazing incidence X-ray diffraction, that this wall-thickness-dependent strength of nanotubular ZnO is not caused by strengthening of constituent ZnO by size reduction at the nanoscale. Finite element analysis suggests that the wall-thickness-dependent strength of nanotubular ZnO originates from nanotubular structures formed on ligaments of np-Au
- …
