785 research outputs found

    Simulation analysis of manipulating light propagation through turbid Media

    Get PDF
    We model light propagation through turbid media by employing the pseudospectral time-domain (PSTD) simulation technique. With specific amplitude and phase, light can be manipulated to propagate through turbid media via multiple scattering. By exploiting the flexibility of the PSTD simulation, we analyze factors that contribute to enhancing light penetration. Specific research findings suggest that it is possible to propagate light with specific amplitude/phase. The reported simulation analysis enables quantitative analyses of directing light through turbid media. Please click Additional Files below to see the full abstract

    Mean structure and fluctuations of the Kuroshio east of Taiwan from in situ and remote observations

    Get PDF
    Author Posting. © The Oceanography Society, 2015. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 28, no. 4 (2015): 74–83, doi:10.5670/oceanog.2015.83.The Kuroshio is important to climate, weather prediction, and fishery management along the northeast coast of Asia because it transports tremendous heat, salt, and energy from east of the Philippines to waters southeast of Japan. In the middle of its journey northward, the Kuroshio’s velocity mean and its variability east of Taiwan crucially affect its downstream variability. To improve understanding of the Kuroshio there, multiple platforms were used to collect intensive observations off Taiwan during the three-year Observations of the Kuroshio Transports and their Variability (OKTV) program (2012–2015). Mean Kuroshio velocity transects show two velocity maxima southeast of Taiwan, with the primary velocity core on the onshore side of the Kuroshio exhibiting a mean maximum velocity of ~1.2 m s–1. The two cores then merge and move at a single velocity maximum of ~1 m s–1 east of Taiwan. Standard deviations of both the directly measured poleward (v) and zonal (u) velocities are ~0.4 m s–1 in the Kuroshio main stream. Water mass exchange in the Kuroshio east of Taiwan was found to be complicated, as it includes water of Kuroshio origin, South China Sea Water, and West Philippine Sea Water, and it vitally affects heat, salt, and nutrient inputs to the East China Sea. Impinging eddies and typhoons are two of the principal causes of variability in the Kuroshio. This study’s models are more consistent with the observed Kuroshio than with high-frequency radar measurements.This study was sponsored by the Ministry of Science and Technology (MOST) of the ROC (Taiwan) under grants NSC 101-2611-M-002-018-MY3, NSC 101-2611- M-019-002, NSC 102-2611-M-002-017, NSC 102-2611- M-019-012, MOST 103-2611-M-002-014, and MOST 103-2611-M-002-018. MA was sponsored by the US Office of Naval Research under grant N00014- 12-1-0445. YHT was supported by NSF Earth System Model (EaSM) Grant 1419292

    Could the North Pacific Oscillation be modified by the initiation of the East Asian winter monsoon?

    Get PDF
    Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 33(6), (2020): 2389-2406, doi:10.1175/JCLI-D-19-0112.1.This study investigates the modulation of North Pacific Oscillation (NPO) variability upon initiation of the East Asian winter monsoon (EAWM). The data show that the initiation of EAWM in the Philippine Sea strongly connects to the southern lobe variability of the NPO in January followed by a basin-scale oceanic Victoria mode pattern. No apparent connection was found for the northern lobe of the NPO when the ENSO signals are removed. The strengthening of the EAWM in November interacts with the Kuroshio front and generates a low-level heating source in the Philippine Sea. Significant Rossby wave sources are then formed in the lower to midtroposphere. Wave ray tracing analyses confirm the atmospheric teleconnection established by the Rossby wave propagation in the mid- to upper troposphere. Analyses of the origin of wave trajectories from the Philippine Sea show a clear eastward propagating pathway that affects the southern lobe of the NPO from the southern lobe of the western Pacific pattern at 500 hPa and above on the time scale of 20 days. No ray trajectories from the lower troposphere can propagate eastward to influence the central-eastern subtropical Pacific. The wave propagation process is further supported by the coupled model experiments.We thank three anonymous reviewers for their constructive comments that have helped to improve the clarity of the presentation. This study was supported by the MOST Grants 107-2611-M-002-013-MY4 and 108-2111-M-002-006 -MY3, Taiwan.2020-08-2

    Terrestrial water storage anomalies emphasize interannual variations in global mean sea level during 1997-1998 and 2015-2016 El Nino Events

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kuo, Y.-N., Lo, M.-H., Liang, Y.-C., Tseng, Y.-H., & Hsu, C.-W. Terrestrial water storage anomalies emphasize interannual variations in global mean sea level during 1997-1998 and 2015-2016 El Nino Events. Geophysical Research Letters, 48(18), (2021): e2021GL094104, https://doi.org/10.1029/2021GL094104.Interannual variations in global mean sea level (GMSL) closely correlate with the evolution of El Niño-Southern Oscillation. However, GMSL differences occur in extreme El Niños; for example, in the 2015–2016 and 1997–1998 El Niños, the peak GMSL during the mature stage of the former (9.00 mm) is almost 2.5 times higher than the latter (3.72 mm). Analyses from satellite and reanalysis data sets show that the disparity in GMSL is primarily due to barystatic (ocean mass) changes. We find that the 2015–2016 event developed not purely as an Eastern Pacific El Niño event but with Central Pacific (CP) El Niño forcing. CP El Niños contribute to a stronger negative anomaly of global terrestrial water storage and subsequent higher barystatic heights. Our results suggest that the mechanism of hydrology-related interannual variations of GMSL should be further emphasized, as more CP El Niño events are projected to occur.This study was supported by a grant of MOST 106-2111-M-002-010-MY4 to National Taiwan University

    Direct evidence of ZnO morphology modification via the selective adsorption of ZnO-binding peptides

    Get PDF
    Biomolecule-mediated ZnO synthesis has great potential for the tailoring of ZnO morphology for specific application in biosensors, window materials for display and solar cells, dye-sensitized solar cells (DSSCs), biomedical materials, and photocatalysts due to its specificity and multi-functionality. In this contribution, the effect of a ZnO-binding peptide (ZnO-BP, G-12: GLHVMHKVAPPR) and its GGGC-tagged derivative (GT-16: GLHVMHKVAPPRGGGC) on the growth of ZnO crystals expressing morphologies dependent on the relative growth rates of (0001) and (10 (1) over bar0) planes of ZnO have been studied. The amount of peptide adsorbed was determined by a depletion method using oriented ZnO films grown by Atomic Layer Deposition (ALD), while the adsorption behavior of G-12 and GT-16 was investigated using XPS and a computational approach. Direct evidence was obtained to show that (i) both the ZnO-BP identified by phage display and its GGGC derivative (GT-16) are able to bind to ZnO and modify crystal growth in a molecule and concentration dependent fashion, (ii) plane selectivity for interaction with the (0001) versus the (10 (1) over bar0) crystal planes is greater for GT-16 than G-12; and (iii) specific peptide residues interact with the crystal surface albeit in the presence of charge compensating anions. To our knowledge, this is the first study to provide unambiguous and direct quantitative experimental evidence of the modification of ZnO morphology via (selective and nonselective) adsorption-growth inhibition mechanisms mediated by a ZnO-BP identified from phage display libraries

    Design of high antifouling pH-responsive membrane for anionic dye filtration under alkaline conditions

    Get PDF
    In this work, a novel high-antifouling poly(vinylidene fluoride) (PVDF) composite membrane was synthesized via free radical polymerization by incorporating a pH-responsive poly(N-acryloyl-L-alanine) (poly(Ala-OH)) as a functional skin layer and 2-hydroxyethyl acrylate-terminated poly(styrene-alt-maleic anhydride) (SMA-HEA) as an amphiphilic linker for effective integration onto the PVDF substrate. FT-IR and XRD analyses confirmed the successful grafting of poly(Ala-OH) through the C=C bond of the linker, leading to a significant enhancement in membrane hydrophilicity. As a result, the modified membranes exhibited a hydrophilic surface. The pH-responsive behavior of the membrane was evident under alkaline conditions (pH = 11), where deprotonation of carboxylic acid groups induced a stronger negative surface charge, causing molecular chain expansion due to electrostatic repulsion. This structural adjustment further improved membrane hydrophilicity and anionic dye rejection. Consequently, the poly(Ala-OH)-modified PVDF membrane demonstrated higher and more stable flux during cyclic filtration tests under alkaline conditions. The results highlight the critical role of the poly(Ala-OH) layer’s carboxylic acid groups and membrane charge variations in significantly enhancing overall hydrophilicity and antifouling performance, making it a promising solution for anionic dye filtration

    Intermediate layer free PVDF evolved CMS on ceramic hollow fiber membrane for CO2 capture

    Get PDF
    The use of carbonized polymers has ushered in a new class of materials with profound implications for the gas separation industry. This study explored the transformation of polyvinylidene fluoride (PVDF) into microporous carbon structures coated onto ceramic substrates, enabling in situ growth of carbon molecular sieve (CMS) materials over hollow fibers. This material featured more robust CMS membranes than alumina and demonstrated exceptional capability in vital gas separations, particularly for CO2/CH4. This novel approach increased the selectivity for gases and exhibited remarkable aging resilience, so the material is a compelling candidate for high-performance gas separations. Furthermore, after 31 days, the weathered carbon dioxide membrane exhibited a slight permeability drift from 234.88 barrers to 195.35 barrers, while the CO2/CH4 ratio increased from 24.21 to 57.14, surpassing the Robeson 2008 upper bound. The PVDF-derived supported hollow fiber carbon membranes provide a blueprint for designing membranes for carbon capture. With the high packing density of the hollow fiber membrane and improved mechanical strength of the supported carbon membrane, this approach overcame the high fabrication costs and brittleness of other carbon membranes. In addition, the entire process for preparation of the PVDF carbon films is easily scaled up and has great potential for future practical application

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns
    corecore