244 research outputs found

    The relationship between Cho/NAA and glioma metabolism: implementation for margin delineation of cerebral gliomas

    Get PDF
    BACKGROUND: The marginal delineation of gliomas cannot be defined by conventional imaging due to their infiltrative growth pattern. Here we investigate the relationship between changes in glioma metabolism by proton magnetic resonance spectroscopic imaging ((1)H-MRSI) and histopathological findings in order to determine an optimal threshold value of choline/N-acetyl-aspartate (Cho/NAA) that can be used to define the extent of glioma spread. METHOD: Eighteen patients with different grades of glioma were examined using (1)H-MRSI. Needle biopsies were performed under the guidance of neuronavigation prior to craniotomy. Intraoperative magnetic resonance imaging (MRI) was performed to evaluate the accuracy of sampling. Haematoxylin and eosin, and immunohistochemical staining with IDH1, MIB-1, p53, CD34 and glial fibrillary acidic protein (GFAP) antibodies were performed on all samples. Logistic regression analysis was used to determine the relationship between Cho/NAA and MIB-1, p53, CD34, and the degree of tumour infiltration. The clinical threshold ratio distinguishing tumour tissue in high-grade (grades III and IV) glioma (HGG) and low-grade (grade II) glioma (LGG) was calculated. RESULTS: In HGG, higher Cho/NAA ratios were associated with a greater probability of higher MIB-1 counts, stronger CD34 expression, and tumour infiltration. Ratio threshold values of 0.5, 1.0, 1.5 and 2.0 appeared to predict the specimens containing the tumour with respective probabilities of 0.38, 0.60, 0.79, 0.90 in HGG and 0.16, 0.39, 0.67, 0.87 in LGG. CONCLUSIONS: HGG and LGG exhibit different spectroscopic patterns. Using (1)H-MRSI to guide the extent of resection has the potential to improve the clinical outcome of glioma surgery

    Compression Molding and Novel Sintering Treatments for Alnico Type-8 Permanent Magnets in Near-Final Shape with Preferred Orientation

    Get PDF
    Economic uncertainty in the rare earth (RE) permanent magnet marketplace, as well as in an expanding electric drive vehicle market that favors permanent magnet alternating current synchronous drive motors, motivated renewed research in RE-free permanent magnets like “alnico,” an Al-Ni-Co-Fe alloy. Thus, high-pressure, gas-atomized isotropic type-8H pre-alloyed alnico powder was compression molded with a clean burn-out binder to near-final shape and sintered to density \u3e99% of cast alnico 8 (full density of 7.3 g/cm3). To produce aligned sintered alnico magnets for improved energy product and magnetic remanence, uniaxial stress was attempted to promote controlled grain growth, avoiding directional solidification that provides alignment in alnico 9. Successful development of solid-state powder processing may enable anisotropically aligned alnico magnets with enhanced energy density to be mass-produced

    Protective Effect and Mechanism of Ursolic Acid on Acute Alcoholic Liver Injury in Mice

    Get PDF
    Objective: In this study, the protective effect of ursolic acid (UA) against acute alcohol-induced liver injury in mice and the mechanism involved was explored. Methods: Forty specific-pathogen-free male ICR mice were randomly assigned to control, model, high-dose UA (80 mg/kg), medium-dose UA (40 mg/kg), and low-dose UA groups (20 mg/kg). Changes in liver pathology, expression of proteins in the nuclear factor-kappa B (NF-κB) pathway, and liver metabolomics were analyzed by determining the mouse serum activities of aspartate transaminase (AST) and alanine transaminase (ALT) and levels of total cholesterol (TC), triglyceride (TG), and inflammatory factors interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) as well as the liver tissue activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and level of malondialdehyde (MDA). Results: Compared with the model group, the UA groups showed significantly lower (P<0.01 or P<0.05) serum ALT and AST activities and TC, TG, IL-1β, IL-6, and TNF-α levels. Moreover, in the UA groups, the liver activities of GSH-Px and SOD were significantly increased (P<0.01 or P<0.05), and the levels of the lipid peroxidation marker MDA were significantly decreased (P<0.01). Western blot results showed that the protein expression levels of Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), NF-κB, and p-NF-κB in the inflammatory pathway were significantly (P<0.01 or P<0.05) reduced in the UA groups. The liver metabolomics results showed significant changes in 19 differential metabolites among the control, model, and UA groups. The levels of the 19 differential metabolites tended to normalize with the action of UA. These differential metabolites were mainly concentrated in pathways of linoleic acid metabolism, ether lipid metabolism, unsaturated fatty acid biosynthesis, glutathione metabolism, and glycerophospholipid metabolism. Conclusion: UA protects mice from acute alcohol-induced liver injury by inhibiting oxidative stress, regulating lipid metabolism, and alleviating inflammatory damage. The mechanism may be related to various metabolic pathways, including those of linoleic acid metabolism, unsaturated fatty acid biosynthesis, glutathione metabolism, and glycerophospholipid metabolism

    Enhanced B7-H4 expression in gliomas with low PD-L1 expression identifies super-cold tumors.

    Get PDF
    BACKGROUND: Characterizing expression profiles of different immune checkpoint molecules are promising for personalized checkpoint inhibitory immunotherapy. Gliomas have been shown as potential targets for immune checkpoint inhibitors recently. Our study was performed to determine coexpression levels of two major B7 immune regulatory molecules programmed death ligand 1 (PD-L1) and B7-H4, both of which have been demonstrated to inhibit antitumor host immunity in gliomas. METHODS: We assessed tumor tissues from stage II-IV primary gliomas (n=505) by immunohistochemistry (IHC) for protein levels of both PD-L1 and B7-H4. Gene coexpression analysis assessing clusters based on extent of PD-L1/B7-H4 classifier genes expression were investigated in two transcriptome datasets (The Cancer Genome Atlas and Chinese Glioma Genome Atlas). In addition, levels of immune cell infiltrates were estimated with IHC and RNA-seq data for assessing the tumor immune microenvironment of PD-L1/B7-H4 subgroups. RESULTS: High expression of PD-L1 and B7-H4 in gliomas was 23% and 20%, respectively, whereas coexpression of two proteins at high levels was limited to 2% of the cases. Comparable results were seen in RNA-seq datasets where PD-L1 mRNA expression levels negatively correlated with that of B7-H4. Gene coexpression modules clustered within each grade of gliomas demonstrated lack of double-high modules (cluster with high expression of both PD-L1 and B7-H4 classifier genes). B7-H4 mRNA expression levels showed negative correlation with extent of immune cell infiltration and High-B7-H4 module gliomas (high B7-H4 but low PD-L1 classifier genes expression) had less tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs). IHC assessment also showed few TILs and TAMs in High-B7-H4 subgroup gliomas. CONCLUSIONS: The majority of gliomas express PD-L1 or B7-H4, however, coexpression of both at high levels is minimal. The high-B7-H4 patients could be considered as \u27super-cold\u27 gliomas with significantly deficient in TILs, suggesting that B7-H4 might inhibit T-cell trafficking into the central nervous system. This study demonstrated that PD-L1 and B7-H4 may serve as mutually compensatory immune checkpoint molecules in gliomas for immune targeted or active-specific immunotherapy. The distinct B7-H4 pathways modulating T-cell function and immune evasion in glioma patients deserved to be further explored in the future during immunotherapy

    CD133-Positive Cells Might Be Responsible for Efficient Proliferation of Human Meningioma Cells

    Get PDF
    Owing to lack of appropriate model systems, investigations of meningioma biology have come to a stop. In this study, we developed a comprehensive digestion method and defined a culture system. Using this method and system, primary meningioma cells in conditioned suspension medium and a hypoxic environment could be amplified in spheres and were passaged for more than ten generations. Meningioma sphere cells were positive for meningioma cell markers and negative for markers of neural cell types. Importantly, we found the cells expressed the stem cell marker, CD133, but not nestin. All of the tumor sphere cell populations showed a slower degree of cell proliferation than that of human glioma cells and fetal neural stem cells (NSCs). Further studies showed that the proliferative rate was positively correlated with CD133 expression. The higher the CD133 expression, the faster the cell proliferation. With the increase in cell generations, the cell proliferation rate gradually slowed down, and CD133 expression also decreased. Single CD133+ cells rather than CD133− cells could form spheres. Thus, the results above indicated that those cells expressing CD133 in spheres might be stem-like cells, which may be responsible for efficient amplification of human meningioma cells. Decreased expression of CD133 may lead to the failure of long-term passaging

    One-stop stroke management platform reduces workflow times in patients receiving mechanical thrombectomy

    Get PDF
    Background and purposeClinical outcome in patients who received thrombectomy treatment is time-dependent. The purpose of this study was to evaluate the efficacy of the one-stop stroke management (OSSM) platform in reducing in-hospital workflow times in patients receiving thrombectomy compared with the traditional model.MethodsThe data of patients who received thrombectomy treatment through the OSSM platform and traditional protocol transshipment pathway were retrospectively analyzed and compared. The treatment-related time interval and the clinical outcome of the two groups were also assessed and compared. The primary efficacy endpoint was the time from door to groin puncture (DPT).ResultsThere were 196 patients in the OSSM group and 210 patients in the control group, in which they were treated by the traditional approach. The mean DPT was significantly shorter in the OSSM group than in the control group (76 vs. 122 min; P &lt; 0.001). The percentages of good clinical outcomes at the 90-day time point of the two groups were comparable (P = 0.110). A total of 121 patients in the OSSM group and 124 patients in the control group arrived at the hospital within 360 min from symptom onset. The mean DPT and time from symptom onset to recanalization (ORT) were significantly shorter in the OSSM group than in the control group. Finally, a higher rate of good functional outcomes was achieved in the OSSM group than in the control group (53.71 vs. 40.32%; P = 0.036).ConclusionCompared to the traditional transfer model, the OSSM transfer model significantly reduced the in-hospital delay in patients with acute stroke receiving thrombectomy treatment. This novel model significantly improved the clinical outcomes of patients presenting within the first 6 h after symptom onset
    corecore