26 research outputs found

    Research Progress in Components, Structure and Functions of Human Milk and Bovine Milk Fat Globules

    Get PDF
    As an important nutrient in milk, fat exists in the form of milk fat globules. Cow’s milk is an important substitute for breast milk, but the difference between its milk fat globules and those of human milk remains to be clarified. In this paper, the main differences in protein composition, lipid composition, structure and function between cow’s and human milk fat globules are reviewed. The types of milk fat globule membrane proteins (MFGMPs) in human milk are significantly more than those in cow’s milk, and there are also obvious differences in the abundance of some special proteins. The composition and distribution of unsaturated and saturated fatty acids in cow’s milk and human milk are also different. Sphingomyelin is more abundant in human milk phospholipids, but in cow’s milk, lecithin is the main phospholipid. In all mammalian milk, the core of the lipid structure is triglyceride, encapsulated by a complex three-layer membrane. In terms of composition and structure, there is heterogeneity in milk fat globule membrane (MFGM) between the same species and different species. By summarizing the differences between human milk and cow’s milk fat globules, this review aims to increase the utilization rate and value of milk MFGM, to improve the structure of simulated milk fat globules, and to further optimize infant formula

    Evaluation of fatty acids in groomed fingerprint by gas chromatographic analysis using various extraction solvents and treatment methods

    Get PDF
    Extremely small amounts of fatty acids detected in latent fingerprints are important for studying fingerprint visualization and age determination through changes in composition over time. However, methods for efficiently extracting or recovering fatty acids from fingerprints have not been extensively studied. If accurate and stable quantitative estimations are established, age estimates will be possible through a better understanding of the fatty acid composition. The extraction solvent and treatment method are essential factors for achieving a reliable analysis of fatty acids. There have been few previous studies that efficiently compared fatty acids. In this study, fatty acids from sebaceous fingerprint residues were quantified with various extraction solvents and treatment methods and were evaluated with gas chromatography flame ionization detection (GC-FID). All data were analyzed using a statistical method.Center for Research and Development of Police science and Technology and Korean National Police Agency (PA-H000001) The Korea government (Ministry of Education) (NRF-2017R1D1A1B03030163) The Korea government (Ministry of Science, ICT and Future Planning) (MSIP) (No. NRF-2018M3C1B7020722) The Ministry of Health & Welfare, Republic of Korea (Grant Number:) (HI14C1277) Ministry of Science, ICT & Future Planning (NRF-2017M3A9E9072939) Seoul National University Hospital Research Fund (Grant 26-2015-0030

    Role of Polycaprolactone Membrane on Guided New Bone Formation in High-speed Distraction Osteogenesis of Rabbit Cranium

    No full text
    학위논문 (박사)-- 서울대학교 대학원 : 의학과, 2011.2. 김석화.Docto

    Aesthetic Analysis of Alteration of Eyebrow Position After Double Eyelidplasty

    Full text link

    Self-Attention Mechanisms in HPC Job Scheduling: A Novel Framework Combining Gated Transformers and Enhanced PPO

    No full text
    In HPC systems, job scheduling plays a critical role in determining resource allocation and task execution order. With the continuous expansion of computing scale and increasing system complexity, modern HPC scheduling faces two major challenges: a massive decision space consisting of tens of thousands of computing nodes and a huge job queue, as well as complex temporal dependencies between jobs and dynamically changing resource states.Traditional heuristic algorithms and basic reinforcement learning methods often struggle to effectively address these challenges in dynamic HPC environments. This study proposes a novel scheduling framework that combines GTrXL with PPO, achieving significant performance improvements through multiple technical innovations. The framework leverages the sequence modeling capabilities of the Transformer architecture and selectively filters relevant historical scheduling information through a dual-gate mechanism, improving long sequence modeling efficiency compared to standard Transformers. The proposed SECT module further enhances resource awareness through dynamic feature recalibration, achieving improved system utilization compared to similar attention mechanisms. Experimental results on multiple datasets (ANL-Intrepid, Alibaba, SDSC-SP2) demonstrate that the proposed components achieve significant performance improvements over baseline PPO implementations. Comprehensive evaluations on synthetic workloads and real HPC trace data show improvements in resource utilization and waiting time, particularly under high-load conditions, while maintaining good robustness across various cluster configurations

    The Use of Soft-Sediment Deformation Structures As Proxies For Paleoseismic Activity And Shaking: A Review

    No full text
    Abstract Quantifying the magnitude of an earthquake is very important for long-term and medium-term earthquake prediction, post-earthquake emergency rescue and seismic hazard assessment. Paleoseismology is the investigation of past earthquakes in the geological record, in particular their location, timing and size. Uncertainties remain in the paleoearthquake magnitudes determined by traditional surface rupture parameters, especially because most seismic events do not result in surface ruptures. In order to address the problem of magnitude evaluation of earthquakes that did not reveal major dislocations, this paper deals with the methods used to determine the seismic shaking intensity based on the types and forms of soft-sediment deformation structures, including maximum liquefaction distance, thickness of disturbed layer, empirical formulae, and thickness of rapidly deposited sand layer. Then we discuss and analyze these methods in terms of their theoretical basis, advantages and disadvantages, accuracy, applicability and problems. We chose two case studies: first, a typical seismics-related deposit (liquefied layer and dsirupted layer) represented by a seismite in the late-Pleistocene Lake Lisan section near Masada in the Dead Sea Basin; and second, the liquefied diapir triggered by an earthquake in the late-Quaternary lacustrine sediments at Luobozhai in the upper reaches of the Minjiang River, east Tibet. The six methods listed above are employed to determine earthquake magnitudes associated with the seismics-related deposit and liquefied diapir, yielding magnitudes of 5.5-6.5 and 6-7, respectively. The combination of the six methods, provided a new and relatively convenient method for determining seismic shaking, especially in lacustrine sediments. This study can serves as a valid reference for comparing methods of calculating the magnitude of a paleoearthquake based on surface rupture parameters, and provides a better understanding of the long-term seismic activity and risk in tectonically active regions.</jats:p

    Chaetocin induces apoptosis in human melanoma cells through the generation of reactive oxygen species and the intrinsic mitochondrial pathway, and exerts its anti-tumor activity in vivo.

    No full text
    Chaetocin is a small-molecule natural product produced by Chaetomium species fungi, and it has a potent anti-proliferative pharmacological activity on various cancer cells. However, the effect of chaetocin on anti-melanoma pharmacological role has not been investigated. Therefore, in this study, we explored the effect of chaetocin on cell proliferation in the human melanoma Sk-Mel-28 and A375 cells and the growth of tumor xenografts in nude mice. The results indicated that chaetocin treatment significantly suppressed cell proliferation and induced apoptosis in the Sk-Mel-28 and A375 cells in a dose- and time-dependent manner. Furthermore, chaetocin treatment resulted in an increased level of cellular reactive oxygen species (ROS), and pre-incubation of cells with N-acetylcysteine (NAC) significantly abrogated chaetocin-induced apoptosis in the melanoma cells. A significant reduction of mitochondrial membrane potential and the release of cytochrome c were observed after chaetocin treatment. Additionally, chaetocin treatment significantly up-regulated the protein levels of Bax, cleaved caspase-9/-3, simultaneously down-regulated the protein levels of Bcl-2, procaspase-9/-3, and activated caspase-9/-3 activity in the melanoma cells. The in vivo data demonstrated that chaetocin treatment significantly inhibited the growth of melanoma tumor xenografts in nude mice, which was closely associated with apoptosis induction, a reduced level of PCNA (proliferating cell nuclear antigen) expression, and activation of capase-9/-3 in tumor xenografts. These are the first data to demonstrate that chaetocin exerts a proapoptotic activity on human melanoma cells through ROS generation and the intrinsic mitochondrial pathway. Therefore, chaetocin might represent an effective candidate for melanoma chemotherapy
    corecore