10,099 research outputs found
Atom interferometry in the presence of an external test mass
The influence of an external test mass on the phase of the signal of an atom
interferometer is studied theoretically. Using traditional techniques in atom
optics based on the density matrix equations in the Wigner representation, we
are able to extract the various contributions to the phase of the signal
associated with the classical motion of the atoms, the quantum correction to
this motion resulting from atomic recoil that is produced when the atoms
interact with Raman field pulses, and quantum corrections to the atomic motion
that occur in the time between the Raman field pulses. By increasing the
effective wave vector associated with the Raman field pulses using modified
field parameters, we can increase the sensitivity of the signal to the point
where the quantum corrections can be measured. The expressions that are derived
can be evaluated numerically to isolate the contribution to the signal from an
external test mass. The regions of validity of the exact and approximate
expressions are determined.Comment: 23 pages, 3 figures, 2 table
Evaluation of a pulsed quasi-steady MPD thruster and associated subsystems
The performance of quasi-steady magnetoplasmadynamic (MPD) thrusters at high power levels is discussed. An axisymmetric configuration is used for the MPD thruster, with various cathode and anode sizes, over a wide range of experimental conditions. Thrust is determined from impulse measurements with current waveforms, while instantaneous measurements are made for all other variables. It is demonstrated that the thrust produced has a predominately self-magnetic origin and is directly proportional to the square of the current. The complete set of impulse measurement data is presented
Quasi-steady MPD propulsion at high power Final technical report
Quasi-steady MPD propulsion at power levels in range 1 to 10 megawatt
Pulsed Laser Interactions with Space Debris: Target Shape Effects
Among the approaches to the proposed mitigation and remediation of the space
debris problem is the de-orbiting of objects in low Earth orbit through
irradiation by ground-based high-intensity pulsed lasers. Laser ablation of a
thin surface layer causes target recoil, resulting in the depletion of orbital
angular momentum and accelerated atmospheric re-entry. However, both the
magnitude and direction of the recoil are shape dependent, a feature of the
laser-based remediation concept that has received little attention. Since the
development of a predictive capability is desirable, we have investigated the
dynamical response to ablation of objects comprising a variety of shapes. We
derive and demonstrate a simple analytical technique for calculating the
ablation-driven transfer of linear momentum, emphasizing cases for which the
recoil is not exclusively parallel to the incident beam. For the purposes of
comparison and contrast, we examine one case of momentum transfer in the
low-intensity regime, where photon pressure is the dominant momentum transfer
mechanism, showing that shape and orientation effects influence the target
response in a similar, but not identical, manner. We address the related
problem of target spin and, by way of a few simple examples, show how ablation
can alter the spin state of a target, which often has a pronounced effect on
the recoil dynamics.Comment: 51 pages, 14 figures, to appear in Advances in Space Researc
Report of conference evaluation committee
A general classification is made of a number of approaches used for the prediction of turbulent shear flows. The sensitivity of these prediction methods to parameter values and initial data are discussed in terms of variable density, pressure fluctuation, gradient diffusion, low Reynolds number, and influence of geometry
Dissipation enhanced vibrational sensing in an olfactory molecular switch
Motivated by a proposed olfactory mechanism based on a
vibrationally-activated molecular switch, we study electron transport within a
donor-acceptor pair that is coupled to a vibrational mode and embedded in a
surrounding environment. We derive a polaron master equation with which we
study the dynamics of both the electronic and vibrational degrees of freedom
beyond previously employed semiclassical (Marcus-Jortner) rate analyses. We
show: (i) that in the absence of explicit dissipation of the vibrational mode,
the semiclassical approach is generally unable to capture the dynamics
predicted by our master equation due to both its assumption of one-way
(exponential) electron transfer from donor to acceptor and its neglect of the
spectral details of the environment; (ii) that by additionally allowing strong
dissipation to act on the odorant vibrational mode we can recover exponential
electron transfer, though typically at a rate that differs from that given by
the Marcus-Jortner expression; (iii) that the ability of the molecular switch
to discriminate between the presence and absence of the odorant, and its
sensitivity to the odorant vibrational frequency, are enhanced significantly in
this strong dissipation regime, when compared to the case without mode
dissipation; and (iv) that details of the environment absent from previous
Marcus-Jortner analyses can also dramatically alter the sensitivity of the
molecular switch, in particular allowing its frequency resolution to be
improved. Our results thus demonstrate the constructive role dissipation can
play in facilitating sensitive and selective operation in molecular switch
devices, as well as the inadequacy of semiclassical rate equations in analysing
such behaviour over a wide range of parameters.Comment: 12 pages, 6 figures, close to published version, comments welcom
Recommended from our members
Coronary Artery Reperfusion
The effects of coronary artery reperfusion 3 hr after coronary occlusion on contractile function and the development of myocardial damage at 24 hr was studied experimentally. In 14 control and 6 reperfused dogs, relationships between epicardial ST segment elevation 15 min after coronary occlusion and myocardial creatine phosphokinase activity (CPK) and histologic appearance 24 hr later were examined. The electrocardiograms were recorded from 10 to 15 sites on the left ventricular epicardium and transmural samples for CPK and histology were obtained from the same sites where epicardial electrocardiograms had been recorded. An inverse relation existed between ST segment elevation (mv) 15 min after occlusion and log CPK activity (IU/ mg of protein) 24 hr later, log CPK = - 0.06ST + 1.26. In dogs subjected to coronary artery reperfusion, there was significantly less CPK depression (log CPK = - 0.01ST + 1.31, [P < 0.01]) than that expected from the control group. In the control group 97% of specimens showing ST segment elevations over 2 mv at 15 min showed abnormal histology 24 hr later. In contrast, in the reperfused group 43% of sites exhibiting elevated ST segment at 15 min showed abnormal histology 24 hr later. In six additional dogs it was shown that the paradoxical movement of the left ventricular wall could be reversed within 1 hr of perfusion. Therefore, by enzymatic and histologic criteria, as well as by functional assessment, coronary artery reperfusion 3 hr after occlusion resulted in salvage of myocardial tissue
Recommended from our members
Tissue factor pathway inhibitor-2 is a novel inhibitor of matrix metalloproteinases with implications for atherosclerosis
Degradation of ECM, particularly interstitial collagen, promotes plaque instability, rendering atheroma prone to rupture. Previous studies implicated matrix metalloproteinases (MMPs) in these processes, suggesting that dysregulated MMP activity, probably due to imbalance with endogenous inhibitors, promotes complications of atherosclerosis. We report here that the serine proteinase inhibitor tissue factor pathway inhibitor-2 (TFPI-2) can function as an MMP inhibitor. TFPI-2 diminished the ability of the interstitial collagenases MMP-1 and MMP-13 to degrade triple-helical collagen, the primary load-bearing molecule of the ECM within human atheroma. In addition, TFPI-2 also reduced the activity of the gelatinases MMP-2 and MMP-9. In contrast to the "classical" tissue inhibitors of MMPs (TIMPs), TFPI-2 expression in situ correlated inversely with MMP levels in human atheroma. TFPI-2 colocalized primarily with smooth muscle cells in the normal media as well as the plaque's fibrous cap. Conversely, the macrophage-enriched shoulder region, the prototypical site of matrix degradation and plaque rupture, stained only weakly for TFPI-2 but intensely for gelatinases and interstitial collagenases. Evidently, human mononuclear phagocytes, an abundant source of MMPs within human atheroma, lost their ability to express this inhibitor during differentiation in vitro. These findings establish a new, anti-inflammatory function of TFPI-2 of potential pathophysiological significance for human diseases, including atherosclerosis
- …
