446 research outputs found
Crystal Structure Dynamics: Evidence by Diffraction and Spectroscopy
Bragg diffraction is a major tool to solve and refine crystal structures, though it is limited as results obtained from the bulk sample are averaged in time and space. In contrast, spectroscopy is site sensitive, and thus a probe for local structure with high time and space resolution. Combination of both methods may reveal important additional information on crystal structures such as disorder and dynamics, and may even help avoid pitfalls in structure solution. Among the given examples are three minerals, i.e., lawsonite, hemimorphite, leonite, which show phase transitions from dynamically disordered to ordered structures. Continuous evolution
from order to dynamic disorder, however without a phase transition, is found in washing soda. Finally, examples of proton dynamics in a tetragonal garnet and in minerals with very strong hydrogen bonds are presented
Recommended from our members
Infrared, Raman and cathodoluminescence studies of impact glasses
We studied the infrared reflectance (IR), Raman, and cathodoluminescence (CL) spectroscopic signatures and scanning electron microscope-cathodoluminescence (SEM-CL) images of three different types of impact glasses: Aouelloul impact glass, a Muong Nong-type tektite, and Libyan desert glass. Both backscattered electron (BSE) and CL images of the Muong Nong-type tektite are featureless; the BSE image of the Libyan desert glass shows only weak brightness contrasts. For the Aouelloul glass, both BSE and CL images show distinct brightness contrast, and the CL images for the Libyan desert glass show spectacular flow textures that are not visible in any other microscopic method. Compositional data show that the SiO2 composition is relatively higher and the Al2O3 content is lower in the CL-bright areas than in the CL-dark regions. The different appearance of the three glass types in the CL images indicates different peak temperatures during glass formation: the tektite was subjected to the highest temperature, and the Aouelloul impact glass experienced a relatively low formation temperature, while the Libyan desert glass preserves a flow texture that is only visible in the CL images, indicating a medium temperature.
All IR reflectance spectra show a major band at around 1040 to 1110 cm-1 (antisymmetric stretching of SiO4 tetrahedra), with minor peaks between 745 and 769 cm-1 (Si-O-Si angle deformation). Broad bands at 491 and 821 cm-1 in the Raman spectra in all samples are most likely related to diaplectic glass remnants, indicating early shock amorphization followed by thermal amorphization. The combination of these spectroscopic methods allows us to deduce information about the peak formation temperature of the glass, and the CL images, in particular, show glass flow textures that are not preserved in other more conventional petrographic images
Raman Spectroscopic and SEM Analysis of Sodium-Zippeite
Raman at 298 and 77 K and infrared spectra of two samples of sodium-zippeite were studied and interpreted. U-O bond lengths in uranyl were calculated and compared with those inferred from the X-ray single crystal structure data of a synthetic sodium-zippeite analog. Hydrogen-bonding network in the studied samples is discussed. O-H…O bond lengths were calculated and compared with those predicted from the X-ray single crystal structure analysis
On hydrogen bond correlations at high pressures
In situ high pressure neutron diffraction measured lengths of O H and H O
pairs in hydrogen bonds in substances are shown to follow the correlation
between them established from 0.1 MPa data on different chemical compounds. In
particular, the conclusion by Nelmes et al that their high pressure data on ice
VIII differ from it is not supported. For compounds in which the O H stretching
frequencies red shift under pressure, it is shown that wherever structural data
is available, they follow the stretching frequency versus H O (or O O) distance
correlation. For compounds displaying blue shifts with pressure an analogy
appears to exist with improper hydrogen bonds.Comment: 12 pages,4 figure
Raman Spectroscopy of the Sampleite Group of Minerals
Raman and infrared spectroscopy has enabled insights into the molecular structure of the sampleite group of minerals. These minerals are based upon the incorporation of either phosphate or arsenate with chloride anion into the structure and as a consequence the spectra refect the bands attributable to these anions, namely phosphate or arsenate with chloride. The sampleite vibrational spectrum reflects the spectrum of the phosphate anion and consists of ν1 at 964, ν2 at 451 cm-1, ν3 at 1016 and 1088 and ν4 at 643, 604, 591 and 557 cm-1. The lavendulan spectrum consists of ν1 at 854, ν2 at 345 cm-1, ν3 at 878 cm-1 and ν4 at 545 cm-1. The Raman spectrum of lemanskiite is different from that of lavendulan consistent with a different structure. Low wavenumber bands at 227 and 210 cm-1 may be assigned to CuCl TO/LO optic vibrations. Raman spectroscopy identified the substitution of arsenate by phosphate in zdenekite and lavendulan
Effect of water on the dislocation creep microstructure and flow stress of quartz and implications for the recrystallized grain size piezometer
Deformation experiments on Black Hills quartzite with three different initial water contents (as-is, water-added, and vacuum-dried) were carried out in the dislocation creep regime in order to evaluate the effect of water on the recrystallized grain size/flow stress piezometer. Samples were deformed in axial compression at temperatures of 750°–1100°C, strain rates between 2 × 10−7 s−1 and 2 × 10−4 s−1 and strains up to 46% using a molten salt assembly in a Griggs apparatus. An increase of the initial water content at otherwise constant deformation conditions caused a decrease in flow stress, an effect known as hydrolytic weakening. The total water content of the starting material was analyzed by Karl Fischer titration (KFT) and Fourier transform infrared (IR) spectroscopy, and quenched samples were analyzed microstructurally and by IR. Changes in the dynamic recrystallization microstructure correlate with changes in flow stress, but there is no independent effect of temperature, strain rate or water content. IR absorption spectra of the deformed spectra indicate that different water contents were maintained in the three sample sets throughout the experiments. However, the amounts of water measured within the vacuum-dried (∼260 ± 40 ppm H2O), the as-is (∼340 ± 50 ppm H2O), and the water-added (∼430 ± 110 ppm H2O) samples are significantly smaller than the initial content of the quartzite (∼640 ± 50 ppm H2O). Water from the inclusions in the starting material adds to the free fluid phase along the grain boundaries, which probably controls the water fugacity and the flow strength, but this water is largely lost during IR sample preparation. Vacuum-dried as well as water-added samples have the same recrystallized grain size/flow stress relationship as the piezometer determined for as-is samples. No independent effect of water on the piezometric relationship has been detected
Synthesis, crystal structure and biological activity of copper(II) complex with 4-nitro-3-pyrazolecarboxylic ligand
The reaction of 4-nitro-3-pyrazolecarboxylic acid and Cu(OAc)2⋅H2O in ethanol resulted in a new coordination compound [Cu2(4-nitro-3- -pzc)2(H2O)6]2H2O (4nitro-3pzc = 4-nitro-3-pyrazolecarboxylate). The compound was investigated by means of single-crystal X-ray diffraction and infrared spectroscopy. The biological activity of the complex was also tested. In the crystal structure of [Cu2(4nitro-3-pzc)2(H2O)6]2H2O, the Cu(II) ion is in a distorted [4+2] octahedral coordination due to the Jan–Teller effect. A survey of the Cambridge Structural Database showed that the octahedral coordination geometry is generally rare for pyrazole-bridged Cu(II) complexes. In the case of Cu(II) complexes with the 3-pyrazolecarboxylato ligands, no complexes with a similar octahedral coordination geometry have been reported. Biological research based on determination of the inhibition effect of the commercial fungicide Cabrio top and the newly synthesized complex on Ph. viticola were performed using the phytosanitary method
Redetermination of eveite, Mn2AsO4(OH), based on single-crystal X-ray diffraction data
The crystal structure of eveite, ideally Mn2(AsO4)(OH) [dimanganese(II) arsenate(V) hydroxide], was refined from a single crystal selected from a co-type sample from Långban, Filipstad, Varmland, Sweden. Eveite, dimorphic with sarkinite, is structurally analogous with the important rock-forming mineral andalusite, Al2OSiO4, and belongs to the libethenite group. Its structure consists of chains of edge-sharing distorted [MnO4(OH)2] octahedra (..2 symmetry) extending parallel to [001]. These chains are cross-linked by isolated AsO4 tetrahedra (..m symmetry) through corner-sharing, forming channels in which dimers of edge-sharing [MnO4(OH)] trigonal bipyramids (..m symmetry) are located. In contrast to the previous refinement from Weissenberg photographic data [Moore & Smyth (1968 ▶). Am. Mineral.
53, 1841–1845], all non-H atoms were refined with anisotropic displacement parameters and the H atom was located. The distance of the donor and acceptor O atoms involved in hydrogen bonding is in agreement with Raman spectroscopic data. Examination of the Raman spectra for arsenate minerals in the libethenite group reveals that the position of the peak originating from the O—H stretching vibration shifts to lower wavenumbers from eveite, to adamite, zincolivenite, and olivenite
Recommended from our members
Scanning electron microscopy, cathodoluminescence, and Raman spectroscopy of experimentally shock metamorphosed quartzite
We studied unshocked and experimentally (at 12, 25, and 28 GPa, with 25, 100, 450, and 750°C pre-shock temperatures) shock-metamorphosed Hospital Hill quartzite from South Africa using cathodoluminescence (CL) images and spectroscopy and Raman spectroscopy to document systematic pressure or temperature-related effects that could be used in shock barometry. In general, CL images of all samples show CL-bright luminescent patchy areas and bands in otherwise non-luminescent quartz, as well as CL-dark irregular fractures. Fluid inclusions appear dominant in CL images of the 25 GPa sample shocked at 750°C and of the 28 GPa sample shocked at 450°C. Only the optical image of our 28 GPa sample shocked at 25°C exhibits distinct planar deformation features (PDFs). Cathodoluminescence spectra of unshocked and experimentally shocked samples show broad bands in the near-ultraviolet range and the visible light range at all shock stages, indicating the presence of defect centers on, e.g., SiO4 groups. No systematic change in the appearance of the CL images was obvious, but the CL spectra do show changes between the shock stages. The Raman spectra are characteristic for quartz in the unshocked and 12 GPa samples. In the 25 and 28 GPa samples, broad bands indicate the presence of glassy SiO2, while high-pressure polymorphs are not detected. Apparently,some of the CL and Raman spectral properties can be used in shock barometry
Elastic relaxation behavior, magnetoelastic coupling, and order-disorder processes in multiferroic metal-organic frameworks
- …
