153 research outputs found

    On hydrogen bond correlations at high pressures

    Full text link
    In situ high pressure neutron diffraction measured lengths of O H and H O pairs in hydrogen bonds in substances are shown to follow the correlation between them established from 0.1 MPa data on different chemical compounds. In particular, the conclusion by Nelmes et al that their high pressure data on ice VIII differ from it is not supported. For compounds in which the O H stretching frequencies red shift under pressure, it is shown that wherever structural data is available, they follow the stretching frequency versus H O (or O O) distance correlation. For compounds displaying blue shifts with pressure an analogy appears to exist with improper hydrogen bonds.Comment: 12 pages,4 figure

    Luminescence and a new approach for detecting heat treatment of geuda sapphire

    Get PDF
    For decades, unraveling the heat treatment of sapphire has been a challenging issue. The present study offers new aspects that support the detection of heat treatment of sapphire. Natural geuda sapphire exhibits orange to red luminescence under longwave ultraviolet (LWUV; 365 nm) light, while heated geuda sapphire shows blue luminescence under shortwave ultraviolet (SWUV; 225 nm) light. The presence of melt inclusions in dissolved silks serves as an indicator of sapphire heat treatment. Fourier-transform infrared (FTIR) spectroscopy alone is insufficient for distinguishing unheated from heated sapphire. By combining orange to red luminescence with blue luminescence and melt inclusions, we provide a practical method for accurately differentiating natural gem-quality sapphire and heated gem-quality sapphire.</p

    Phase transitions in minerals: Correlation of spectroscopic and diffraction data

    Full text link

    The ten two-dimensional crystallographic point groups - an interactive PowerPoint exercise

    Full text link
    corecore