101 research outputs found
Sediment geochemistry of streams draining abandoned lead / zinc mines in central Wales: the Afon Twymyn
Purpose Despite the decline of metal mining in the UK during the early 20th century, a substantial legacy of heavy metal contamination persists in river channel and floodplain sediments. Poor sediment quality is likely to impede the achievement of ’good’ chemical and ecological status for surface waters under the European Union Water Framework Directive. This paper examines the environmental legacy of the Dylife lead/zinc mine in the central Wales mining district. Leachable heavy metal concentrations in the bed sediments of the Afon Twymyn are established and the geochemical partitioning, potential mobility and bioavailability of sediment-associated heavy metals are established.
Materials and methods Sediment samples were collected from the river bed and dry-sieved into two size fractions (<63 μm and 64–2,000 μm). The fractionated samples were then subjected to a sequential extraction procedure to isolate heavy metals (Pb, Zn, Cu, Cd, Fe, Mn) in three different geochemical phases. Sediment samples were then analysed for heavy metals using ICP-AES.
Results and discussion The bed sediment of the Afon Twymyn is grossly polluted with heavy metals. Within the vicinity of the former mine, Pb concentrations are up to 100 times greater than levels reported to have deleterious impacts on aquatic ecology. Most heavy metals exist in the most mobile easily exchangeable and carbonate-bound geochemical phases, potentially posing serious threats to ecological integrity and constituting a significant, secondary, diffuse source of pollution. Metal concentrations decrease sharply downstream of the former mine, although there is a gradual increase in the proportion of readily extractable Zn and Cd.
Conclusions Implementation of sediment quality guidelines is important in order to achieve the aims of the Water Framework Directive. Assessments of sediment quality should include measurements of background metal concentrations, river water physico-chemistry and, most importantly, metal mobility and potential bioavailability. Uniformity of sediment guidelines throughout Europe and flexibility of targets with regard to the most heavily contaminated mine sites are recommended
The impairment of river systems by metal mine contamination: A review including remediation options
Meta-analysis of locking plate versus intramedullary nail for treatment of proximal humeral fractures
3D Porous Pyramid Heterostructure Array Realizing Efficient Photo‐Electrochemical Performance
Direct photo-electrochemical (PEC) water splitting is of great practical interest for developing a sustainable energy systems, but remains a big challenge owing to sluggish charge separation, low efficiency, and poor stability. Herein, a 3D porous In2O3/In2S3 pyramid heterostructure array on a fluorine-doped tin oxide substrate is fabricated by an ion exchange–induced synthesis strategy. Based on the synergistic structural and electronic modulations from density functional theory calculations and experimental observations, 3D porous In2O3/In2S3 photoanode by the protective layer delivers a low onset potential of ≈0.02 V versus reversible hydrogen electrode (RHE), the highest photocurrent density of 8.2 mA cm−2 at 1.23 V versus RHE among all the In2S3 photoanodes reported to date, an incident photon-to-current efficiency of 76% at 400 nm, and high stability over 20 h for PEC water splitting are reported. This work provides an alternative promising prototype for the design and construction of novel heterostructures in robust PEC water splitting applications.</p
Fully decentralised multi‐area dynamic economic dispatch for large‐scale power systems via cutting plane consensus
Simultaneously Efficient Solar Light Harvesting and Charge Transfer of Hollow Octahedral Cu2S/CdS p–n Heterostructures for Remarkable Photocatalytic Hydrogen Generation
Solar-driven water splitting is a promising alternative to industrial hydrogen production. This study reports an elaborate design and synthesis of the integration of cadmium sulfide (CdS) quantum dots and cuprous sulfide (Cu2S) nanosheets as three-dimensional (3D) hollow octahedral Cu2S/CdS p–n heterostructured architectures by a versatile template and one-pot sulfidation strategy. 3D hierarchical hollow nanostructures can strengthen multiple reflections of solar light and provide a large specific surface area and abundant reaction sites for photocatalytic water splitting. Owing to the construction of the p–n heterostructure as an ideal catalytic model with highly matched band alignment at Cu2S/CdS interfaces, the emerging internal electric field can facilitate the space separation and transfer of photoexcited charges between CdS and Cu2S and also enhance charge dynamics and prolong charge lifetimes. Notably, the unique hollow Cu2S/CdS architectures deliver a largely enhanced visible-light-driven hydrogen generation rate of 4.76 mmol/(g·h), which is nearly 8.5 and 476 times larger than that of pristine CdS and Cu2S catalysts, respectively. This work not only paves the way for the rational design and fabrication of hollow photocatalysts but also clarifies the crucial role of unique heterostructure in photocatalysis for solar energy conversion. </p
Bromide-Mediated Photoelectrochemical Epoxidation of Alkenes Using Water as an Oxygen Source with Conversion Efficiency and Selectivity up to 100%
In a photoelectrochemical (PEC) cell, the production of solar fuels such as hydrogen is often accompanied either by the oxidation of water or by the oxidation of organic substrates. In this study, we report bromide-mediated PEC oxidation of alkenes at a mesoporous BiVO4 photoanode and simultaneous hydrogen evolution at the cathode using water as an oxygen source. NaBr as a redox mediator was demonstrated to play a dual role in the PEC organic synthesis, which facilitates the selective oxidation of alkenes into epoxides and suppresses the photocorrosion of BiVO4 in water. This method enables a near-quantitative yield and 100% selectivity for the conversion of water-soluble alkenes into their epoxides in H2O/CH3CN solution (v/v, 4/1) under simulated sunlight without the use of noble metal-containing catalysts or toxic oxidants. The maximum solar-to-electricity efficiency of 0.58% was obtained at 0.39 V vs Ag/AgCl. The obtained epoxide products such as glycidol are important building blocks of the chemical industry. Our results provide an energy-saving and environment-benign approach for producing value-added chemicals coupled with solar fuel generation. </p
- …
