4,078 research outputs found
Information scraps: how and why information eludes our personal information management tools
In this paper we describe information scraps -- a class of personal information whose content is scribbled on Post-it notes, scrawled on corners of random sheets of paper, buried inside the bodies of e-mail messages sent to ourselves, or typed haphazardly into text files. Information scraps hold our great ideas, sketches, notes, reminders, driving directions, and even our poetry. We define information scraps to be the body of personal information that is held outside of its natural or We have much still to learn about these loose forms of information capture. Why are they so often held outside of our traditional PIM locations and instead on Post-its or in text files? Why must we sometimes go around our traditional PIM applications to hold on to our scraps, such as by e-mailing ourselves? What are information scraps' role in the larger space of personal information management, and what do they uniquely offer that we find so appealing? If these unorganized bits truly indicate the failure of our PIM tools, how might we begin to build better tools? We have pursued these questions by undertaking a study of 27 knowledge workers. In our findings we describe information scraps from several angles: their content, their location, and the factors that lead to their use, which we identify as ease of capture, flexibility of content and organization, and avilability at the time of need. We also consider the personal emotive responses around scrap management. We present a set of design considerations that we have derived from the analysis of our study results. We present our work on an application platform, jourknow, to test some of these design and usability findings
Domino Tatami Covering is NP-complete
A covering with dominoes of a rectilinear region is called \emph{tatami} if
no four dominoes meet at any point. We describe a reduction from planar 3SAT to
Domino Tatami Covering. As a consequence it is NP-complete to decide whether
there is a perfect matching of a graph that meets every 4-cycle, even if the
graph is restricted to be an induced subgraph of the grid-graph. The gadgets
used in the reduction were discovered with the help of a SAT-solver.Comment: 10 pages, accepted at The International Workshop on Combinatorial
Algorithms (IWOCA) 201
Simple Wriggling is Hard unless You Are a Fat Hippo
We prove that it is NP-hard to decide whether two points in a polygonal
domain with holes can be connected by a wire. This implies that finding any
approximation to the shortest path for a long snake amidst polygonal obstacles
is NP-hard. On the positive side, we show that snake's problem is
"length-tractable": if the snake is "fat", i.e., its length/width ratio is
small, the shortest path can be computed in polynomial time.Comment: A shorter version is to be presented at FUN 201
Cluster Dynamical Mean-field calculations for TiOCl
Based on a combination of cluster dynamical mean field theory (DMFT) and
density functional calculations, we calculated the angle-integrated spectral
density in the layered quantum magnet TiOCl. The agreement with recent
photoemission and oxygen K-edge X-ray absorption spectroscopy experiments is
found to be good. Th e improvement achieved with this calculation with respect
to previous single-site DMFT calculations is an indication of the correlated
nature and low-dimensionality of TiOCl.Comment: 9 pages, 3 figures, improved version as publishe
Celestial mechanics of elastic bodies
We construct time independent configurations of two gravitating elastic
bodies. These configurations either correspond to the two bodies moving in a
circular orbit around their center of mass or strictly static configurations.Comment: 16 pages, 2 figures, several typos removed, erratum appeared in
MathZ.263:233,200
Dynamical Mean-Field Theory within the Full-Potential Methods: Electronic structure of Ce-115 materials
We implemented the charge self-consistent combination of Density Functional
Theory and Dynamical Mean Field Theory (DMFT) in two full-potential methods,
the Augmented Plane Wave and the Linear Muffin-Tin Orbital methods. We
categorize the commonly used projection methods in terms of the causality of
the resulting DMFT equations and the amount of partial spectral weight
retained. The detailed flow of the Dynamical Mean Field algorithm is described,
including the computation of response functions such as transport coefficients.
We discuss the implementation of the impurity solvers based on hybridization
expansion and an analytic continuation method for self-energy. We also derive
the formalism for the bold continuous time quantum Monte Carlo method. We test
our method on a classic problem in strongly correlated physics, the
isostructural transition in Ce metal. We apply our method to the class of heavy
fermion materials CeIrIn_5, CeCoIn_5 and CeRhIn_5 and show that the Ce 4f
electrons are more localized in CeRhIn_5 than in the other two, a result
corroborated by experiment. We show that CeIrIn_5 is the most itinerant and has
a very anisotropic hybridization, pointing mostly towards the out-of-plane In
atoms. In CeRhIn_5 we stabilized the antiferromagnetic DMFT solution below 3K,
in close agreement with the experimental N\'eel temperature.Comment: The implementation of Bold-CTQMC added and some test of the method
adde
Realistic Exact Solution for the Exterior Field of a Rotating Neutron Star
A new six-parametric, axisymmetric and asymptotically flat exact solution of
Einstein-Maxwell field equations having reflection symmetry is presented. It
has arbitrary physical parameters of mass, angular momentum, mass--quadrupole
moment, current octupole moment, electric charge and magnetic dipole, so it can
represent the exterior field of a rotating, deformed, magnetized and charged
object; some properties of the closed-form analytic solution such as its
multipolar structure, electromagnetic fields and singularities are also
presented. In the vacuum case, this analytic solution is matched to some
numerical interior solutions representing neutron stars, calculated by Berti &
Stergioulas (Mon. Not. Roy. Astron. Soc. 350, 1416 (2004)), imposing that the
multipole moments be the same. As an independent test of accuracy of the
solution to describe exterior fields of neutron stars, we present an extensive
comparison of the radii of innermost stable circular orbits (ISCOs) obtained
from Berti & Stergioulas numerical solutions, Kerr solution (Phys. Rev. Lett.
11, 237 (1963)), Hartle & Thorne solution (Ap. J. 153, 807, (1968)), an
analytic series expansion derived by Shibata & Sasaki (Phys. Rev. D. 58 104011
(1998)) and, our exact solution. We found that radii of ISCOs from our solution
fits better than others with realistic numerical interior solutions.Comment: 13 pages, 13 figures, LaTeX documen
Sustaining entrepreneurial business: a complexity perspective on processes that produce emergent practice
This article examines the management practices in an entrepreneurial small firm which sustain the business. Using a longitudinal qualitative case study, four general processes are identified (experimentation, reflexivity, organising and sensing), that together provide a mechanism to sustain the enterprise. The analysis draws on concepts from entrepreneurship and complexity science. We suggest that an entrepreneur’s awareness of the role of these parallel processes will facilitate their approaches to sustaining and developing enterprises. We also suggest that these processes operate in parallel at multiple levels, including the self, the business and inter-firm networks. This finding contributes to a general theory of entrepreneurship. A number of areas for further research are discussed arising from this result
Electron waves in chemically substituted graphene
We present exact analytical and numerical results for the electronic spectra
and the Friedel oscillations around a substitutional impurity atom in a
graphene lattice. A chemical dopant in graphene introduces changes in the
on-site potential as well as in the hopping amplitude. We employ a T-matrix
formalism and find that disorder in the hopping introduces additional
interference terms around the impurity that can be understood in terms of
bound, semi-bound, and unbound processes for the Dirac electrons. These
interference effects can be detected by scanning tunneling microscopy.Comment: 4 pages, 7 figure
Analytical approximation of the exterior gravitational field of rotating neutron stars
It is known that B\"acklund transformations can be used to generate
stationary axisymmetric solutions of Einstein's vacuum field equations with any
number of constants. We will use this class of exact solutions to describe the
exterior vacuum region of numerically calculated neutron stars. Therefore we
study how an Ernst potential given on the rotation axis and containing an
arbitrary number of constants can be used to determine the metric everywhere.
Then we review two methods to determine those constants from a numerically
calculated solution. Finally, we compare the metric and physical properties of
our analytic solution with the numerical data and find excellent agreement even
for a small number of parameters.Comment: 9 pages, 10 figures, 3 table
- …
